Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. \(\left|\dfrac{8}{4}-\left|x-\dfrac{1}{4}\right|\right|-\dfrac{1}{2}=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{8}{4}-x+\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{8}{4}+x-\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{9}{4}-x\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{7}{4}+x\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\dfrac{9}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\\x=\dfrac{9}{4}-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}\dfrac{7}{4}+x-\dfrac{1}{2}=\dfrac{3}{4}\\-\dfrac{7}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\\x=-3\end{matrix}\right.\)
Ở nơi x=9/4-1/2 là x-9/4-1/2 nha
a. -1,5 + 2x = 2,5
<=> 2x = 2,5 + 1,5
<=> 2x = 4
<=> x = 2
b. \(\dfrac{3}{2}\left(x+5\right)-\dfrac{1}{2}=\dfrac{4}{3}\)
<=> \(\dfrac{3}{2}x+\dfrac{15}{2}-\dfrac{1}{2}=\dfrac{4}{3}\)
<=> \(\dfrac{9x}{6}+\dfrac{45}{6}-\dfrac{3}{6}=\dfrac{8}{6}\)
<=> 9x + 45 - 3 = 8
<=> 9x = 8 + 3 - 45
<=> 9x = -34
<=> x = \(\dfrac{-34}{9}\)
Đặt \(A=1^3+2^3+3^3+...+99^3+100^3\)
\(\Rightarrow A=\left(1-1\right).1.\left(1+1\right)+1+\left(2-1\right).2.\left(2+1\right)+2+...+\left(99-1\right).99.\left(99+1\right)+99+\left(100-1\right).100.\left(100+1\right)+100\)
\(\Rightarrow A=1+2+1.2.3+3+2.3.4+...+100+99.100.101\)
\(\Rightarrow A=\left(1+2+3+...+100\right)+\left(1.2.3+2.3.4+...+99.100.101\right)\)
\(\Rightarrow A=5050+101989800\)
\(\Rightarrow A=101994850.\)
Vậy \(A=101994850.\)
Chúc bạn học tốt!
Mik đội ơn pạn nhìu lém!!! Chả ai thèm dzúp mik j cả, chỉ mỗi pạn thui!!! hic hic *xúc cmn động*
Ta có: B = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
=> 3A = 1.2.(3-0) + 2.3.(4-1) + .... + n.(n+1).(n+2 - n+1)
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + n.(n+1).(n+2)
=> 3A = n.(n+1).(n+2)
= > A =
13+23+33+...+1003
=1+2+1.2.3+3+2.3.4+100+99.100.101
=(1+2+3+...+100)+(1.2.3+2.3.4+...+99.100.101)
=5050+101989800
=101994850
NHỚ T.I.C.K và KB với mk nha
B=1*2*3+2*3*4+3*4*5+...+(n-1)n(n+1)
4B=1*2*3*4+2*3*4*(5-1)+3*4*5*(6-2)+...+(n-1)*n*(n+1)*[(n+2)-(n-2)]
4B=1*2*3*4+2*3*4*5-1*2*3*4+3*4*5*6-2*3*4*5+...+(n-1)n(n+1)(n+2)-(n-2)(n-1)n(n+1)
4B=(n-1)n(n+1)(n+2)
B=[(n-1)n(n+1)(n+2)]:4
Nho k cho minh voi nha
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
b) Xét ΔABC có AB<AC<BC(3cm<4cm<5cm)
mà góc đối diện với cạnh AB là \(\widehat{ACB}\)
và góc đối diện với cạnh AC là \(\widehat{ABC}\)
và góc đối diện với cạnh BC là \(\widehat{BAC}\)
nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)
Xét ΔABC có
HB là hình chiếu của AB trên BC
HC là hình chiếu của AC trên BC
AB<AC
Do đó: HB<HC
c) Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD(gt)
Do đó: ΔCAB=ΔCAD(hai cạnh góc vuông)
Suy ra: CB=CD(hai cạnh tương ứng)
Xét ΔCBD có CB=CD(cmt)
nên ΔCBD cân tại C(Định nghĩa tam giác cân)
B=1.2.3+2.3.4+.........+(n−1)n(n+1)B=1.2.3+2.3.4+.........+(n−1)n(n+1)
⇔4B=1.2.3.4+2.3.4.4+........+(n−1)n(n+1).4⇔4B=1.2.3.4+2.3.4.4+........+(n−1)n(n+1).4
⇔4B=(4−0).1.2.3+(5−1).2.3.4+.........+[(n+2)−(n−2)](n−1)n(n+1)⇔4B=(4−0).1.2.3+(5−1).2.3.4+.........+[(n+2)−(n−2)](n−1)n(n+1)
⇔4B=1.2.3.4−0.1.2.3+2.3.4.5−1.2.3.4+.......+(n−1)n(n+1)(n+2)(n+3)−(n−2)(n−1)n(n+1)⇔4B=1.2.3.4−0.1.2.3+2.3.4.5−1.2.3.4+.......+(n−1)n(n+1)(n+2)(n+3)−(n−2)(n−1)n(n+1)
⇔4B=(n−1)n(n+1)(n+2)⇔4B=(n−1)n(n+1)(n+2)
⇔B=(n−1)n(n+1)(n+2)4
Băng Băng 2k6 giúp mik lm ik, mik bận