\(^2\) - 2x = x
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2023

`3x^2-2x=x^2+3`

`<=>3x^2-x^2-2x-3=0`

`<=>2x^2-2x-3=0`

Ptr có: `\Delta'=(-1)^2-2.(-3)=7 > 0`

  `=>`Ptr có `2` nghiệm pb

`=>{(x_1=[-b'+\sqrt{\Delta'}]/a=[1+\sqrt{7}]/2),(x_1=[-b'-\sqrt{\Delta'}]/a=[1-\sqrt{7}]/2):}`

19 tháng 2 2023

nhanh vậy cảm ơn

13 tháng 7 2016

2) pt đề bài cho=0

<=> \(\left(x-1\right)^2\left(2x^2-x+2\right)\)=0

<=>\(\orbr{\begin{cases}x-1=0\left(1\right)\\2x^2-x+2=0\left(2\right)\end{cases}}\)

Từ 1 => x=1

từ 2 =>\(2\left(x^2-\frac{1}{2}x+1\right)\)

 =\(2\left[\left(x-\frac{1}{4}\right)^2+\frac{15}{16}\right]>0\)với mọi x

Nên pt 2 cô nghiệm

Vậy pt đề cho có nghiệm là 1

13 tháng 7 2016

1) \(x^3-3x^2+2=\left(x-1\right)\left(2^2-x+2\right)=0\)

b2

\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)

14 tháng 8 2017

Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)

Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)

và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)

Do đó \(VT\ge VF\)

Dấu = xảy ra khi\(x=\frac{1}{2}\)

18 tháng 9 2017

a)  \(3+\sqrt{2x-3}=x\)

    \(\Leftrightarrow\sqrt{2x-3}=x-3\)

    \(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\2x-3=\left(x-3\right)^2\end{cases}}\)

    \(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\x^2-8x+12=0\end{cases}}\)

    \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x=2;x=6\end{cases}}\)

   \(\Leftrightarrow x=6\)

b) Ta có: \(F\left(2\right)=a\left(2\right)^3+b.2-1=2009\)

   \(\Rightarrow a.\left(2\right)^3+b.2=2009+1=2010\)

Suy ra \(F\left(-2\right)=a.\left(-2\right)^3+b\left(-2\right)-1\)

                           \(=-\left[a.\left(2\right)^3+b.2\right]-1\)

                            \(=-\left[2010\right]-1\)

                              \(=-2011\)

c) Nhẩm thấy x = 1 là nghiệm nên ta phân tách vế trái thành nhân tử có một thừa số là (x -1).

Ta chia đa thức vế trái cho  \(x-1\) thì được thương là \(\left(m+1\right)x^2+4mx+4m-1\).

Vậy phương trình tích là:

     \(\left(x-1\right)\left[\left(m+1\right)x^2+4mx+4m-1\right]=0\)

   

2 tháng 3 2020

mình làm nốt câu còn lại ok

b) ta thấy x = 0 không là nghiệm của phương trình

chia cả 2 vế cho x khác 0, ta được :

\(\left(x-\frac{1}{x}\right)+\sqrt[3]{x-\frac{1}{x}}=2\)

đặt \(t=\sqrt[3]{x-\frac{1}{x}}\)

Ta có : \(t^3+t-2=0\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\Leftrightarrow t=1\)

Khi đó : \(\sqrt[3]{x-\frac{1}{x}}=1\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)

Vậy ...

2 tháng 3 2020

a) Từ phương trình đã cho ta có: \(x\ge0\)

Rõ ràng x=0 không thỏa mãn phương trình đã cho nên x>0

Nhân với liên hợp của vế trái ta được:

\(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\frac{x+2}{3}\)

Kết hợp với phương trình đã cho ta có:

\(\sqrt{2x^2+x+1}=\frac{5x+1}{3}\)

Giải phương trình này được nghiệm \(x=\frac{-19+3\sqrt{65}}{14}\)

23 tháng 7 2016

Nhân cả hai vế của phương trình với 2 ta có:
\(4x+2\sqrt{x}.\sqrt{3x+2}=6\left(\sqrt{x}+\sqrt{3x+2}\right)+4\sqrt{2}-2\)
\(\Leftrightarrow\left(x+2\sqrt{x}.\sqrt{3x+2}+3x+2\right)-2=6\left(\sqrt{x}+\sqrt{3x+2}\right)+4\sqrt{2}-2\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{3x+2}\right)^2=6\left(\sqrt{x}+\sqrt{3x+2}\right)+4\sqrt{2}\)
Đặt \(t=\sqrt{x}+\sqrt{3x+2},x\ge0\Rightarrow\sqrt{x}+\sqrt{3x+2}\ge\sqrt{2}\)
phương trình trở thành: \(t^2-6t-4\sqrt{2}=0\Leftrightarrow\orbr{\begin{cases}t=4+2\sqrt{2}\left(tm\right)\\t=2-2\sqrt{2}\left(l\right)\end{cases}}\)
Với \(t=4+2\sqrt{2}\Rightarrow\sqrt{x}+\sqrt{3x+2}=4+2\sqrt{2}\)
 Đặt:\(a=\sqrt{x},b=\sqrt{3x+2},q=4+2\sqrt{2}\)ta có hệ sau:
\(\hept{\begin{cases}a+b=q\\3a^2-b^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}b=q-a\\3a^2-\left(q-a\right)^2=-2\end{cases}}\Leftrightarrow2a^2+2qa-\left(q^2-2\right)=0\)
suy ra: \(a=\frac{-q+\sqrt{3q^2-4}}{2}\Leftrightarrow\sqrt{x}=\frac{-q+\sqrt{3q^2-4}}{2}\)
vậy \(x=\left(\frac{-q+\sqrt{3q^2-4}}{2}\right)^2\)với \(q=4+2\sqrt{2}\)

13 tháng 8 2017

a)\(\sqrt{x+1}\left(x+4\right)=\left(x+18\right)\sqrt{6+x}-3x-40\)

\(pt\Leftrightarrow\sqrt{x+1}\left(x+4\right)-14=\left(x+18\right)\sqrt{6+x}-63-3x-9\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+4\right)^2-196}{\sqrt{x+1}\left(x+4\right)+14}=\frac{\left(x+18\right)^2\left(x+6\right)-3969}{\left(x+18\right)\sqrt{6+x}+63}-3\left(x-3\right)\)

\(\Leftrightarrow\frac{x^3+9x^2+24x-180}{\sqrt{x+1}\left(x+4\right)+14}-\frac{x^3+42x^2+540x-2025}{\left(x+18\right)\sqrt{6+x}+63}+3\left(x-3\right)=0\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+12x+60\right)}{\sqrt{x+1}\left(x+4\right)+14}-\frac{\left(x-3\right)\left(x^2+45x+675\right)}{\left(x+18\right)\sqrt{6+x}+63}+3\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+12x+60}{\sqrt{x+1}\left(x+4\right)+14}-\frac{x^2+45x+675}{\left(x+18\right)\sqrt{6+x}+63}+3\right)=0\)

Pt trong ngoặc to to kia vô nghiệm

Suy ra x=3

b)\(3\left(\sqrt{x+9}-\sqrt{x+1}\right)=4-4x\)

\(pt\Leftrightarrow\sqrt{x+9}-\sqrt{x+1}=\frac{4-4x}{3}\)

\(\Leftrightarrow2x+10-2\sqrt{\left(x+1\right)\left(x+9\right)}=\frac{16x^2-32x+16}{9}\)

\(\Leftrightarrow-2\sqrt{\left(x+1\right)\left(x+9\right)}=\frac{16x^2-32x+16}{9}-\left(2x+10\right)\)

\(\Leftrightarrow4\left(x+1\right)\left(x+9\right)=\frac{256x^4-1600x^3+132x^2+7400x+5476}{81}\)

\(\Leftrightarrow\frac{-64\left(x^2-5x-5\right)\left(4x^2-5x-8\right)}{81}=0\)

mỗi lần bình phương tự rút ra điều kiện mà khử nghiệm nhé :v

13 tháng 8 2017

hi, ^.^, thanks bn nhìu nha >3

20 tháng 4 2020

Bạn tham khảo câu trả lời tại đây:

Câu hỏi của Nguyễn Kim Chi - Toán lớp 8 - Học toán với OnlineMath