K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

a: Xét tứ giác BHCD có 

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

21 tháng 10 2021

a) Xét tứ giác BHCD có:

M là trung điểm BC

M là trung điểm HD(H đối xứng D qua M)

=> BHCD là hbh

b) Gọi E, F lần lượt là giao điểm CH với AB và BH với AC

=> BF và CE là đường cao tam giác ABC

\(\Rightarrow\left\{{}\begin{matrix}BF\perp AC\\CE\perp AB\end{matrix}\right.\)

Mà CD//BF,BD//CE(BHCD là hbh)

=> \(\left\{{}\begin{matrix}BD\perp AB\\CD\perp AC\end{matrix}\right.\)

=> Tam giác ABD vuông tại B và tam giác ACD vuông tại C

21 tháng 12 2017

Bạn có lời giải chưa

9 tháng 6 2021

minhf nữa

14 tháng 8 2018

dễ ẹc!!!!!!!!

14 tháng 8 2018

làm hộ tui với

12 tháng 12 2023

a: ta có:BD\(\perp\)AB

CH\(\perp\)AB

Do đó: BD//CH

Ta có: CD\(\perp\)CA

BH\(\perp\)CA

Do đó: CD//BH

Xét tứ giác BHCD có

BH//CD
BD//CH

Do đó: BHCD là hình bình hành

b: ta có: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HD

=>H,M,D thẳng hàng

c: Ta có: ΔABD vuông tại B

mà BI là đường trung tuyến

nên \(BI=\dfrac{AD}{2}\left(1\right)\)

Ta có: ΔACD vuông tại C

mà CI là đường trung tuyến

nên \(CI=\dfrac{AD}{2}\left(2\right)\)

Từ (1) và (2) suy ra BI=CI

d: Để BDCH là hình thoi thì HB=HC

=>ΔHBC cân tại H

=>\(\widehat{HBC}=\widehat{HCB}\)

Ta có: \(\widehat{HBC}+\widehat{ACB}=90^0\)(BH\(\perp\)AC)

\(\widehat{HCB}+\widehat{ABC}=90^0\)(CH\(\perp\)AB)

mà \(\widehat{HBC}=\widehat{HCB}\)

nên \(\widehat{ABC}=\widehat{ACB}\)

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K