Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì │x-2013│= │2013-x│
=> │x-2012│+ │x-2013│=│x-2012│+│2013-x│
Có │x-2012│+│2013-x│>=│x-2012+2013-x│
=>│x-2012│+│2013-x│>= 1 hay P>=1
=> minP=1
Có 1=0+1. Khi đó:
TH1: │x-2012│+│2013-x│=1
0 + 1
=>x=2012
TH2: │x-2012│+│2013-x│=1
1 + 0
=> x=2013
Vậy GTNN của P bằng 1 khi x=2012 hoặc x=2013
P=|x-2013|+|x-2014|
=> P = |x-2013| +|2014-x|
Áp dụng bất đẳng thức về giá trị tuyệt đối :
| x - 2013 | + | 2014 - x | >hoặc = | x - 2013 + 2014 -x | = 1 với mọi x
Dấu = xảy ra <=> (x-2013)(2014-x) >hoặc = 0
=>(x-2013)(x-2014)< hoặc =0
=>x-2013 và x-2014 trái dấu
x-2013>x-2014
=>x-2013>hoặc = 0 và x-2014 < hoặc = 0
2013< hoặc =x< hoặc = 2014
Vậy giá trị nhỏ nhất của P = 1 tại 2013< hoặc = x < hoặc = 2014
Ta có M = |2012 - x| + |2013-x| = |2012 - x|+|x-2013| \(\ge\)|2012-x+x-2013|
=|2012-2013|=|-1|=1
\(\Rightarrow\) Mmin=1
Ta có :
| x - 2012 | + | x - 2013 | = | x - 2012 | + | 2013 - x | \(\ge\) | x - 2012 + 2013 - x | = 1
Vậy Mmin = 1 khi 2012 \(\le x\le2013\)
Ta có: \(M=\left|x-2012\right|+\left|x-2013\right|\ge\left|2012-x\right|+\left|x-2013\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(M\ge\left|2012-x\right|+\left|x-2013\right|\ge\left|2012-x+x-2013\right|=\left|2012-2013\right|=1\)
Dấu " = " xảy ra khi \(2012-x\ge0;x-2013\ge0\)
\(\Rightarrow x\le2012;x\ge2013\)
\(\Rightarrow2012\le x\le2013\)
Vậy \(MIN_M=1\) khi \(2012\le x\le2013\)
\(A=|x-2012|+|x-2013|=|x-2012|+|2013-x|\ge|x-2012+2013-x|=1\)
Dấu = xảy ra \(< =>2012\le x\le2013\)
\(|x-2012|+|x-2013|\)
\(=|x-2012|+|-\left(2013-x\right)|\)
\(=|x-2012|+|2013-x|\)
Ta có
\(|x-2012|+|2013-x|\ge|x-2012+2013-x|\)
\(|x-2012|+|2013-x|\ge1\)
Dấu = xảy ra
\(\Leftrightarrow\left(x-2012\right)\left(2013-x\right)\ge0\)
TH 1 :
\(\hept{\begin{cases}x-2012\ge0\\2013-x\le0\end{cases}}\)
\(\hept{\begin{cases}x\ge2012\\-x\ge-2013\end{cases}}\)
\(\hept{\begin{cases}x\ge2012\\x\le2013\end{cases}}\) \(\Rightarrow2012\le x\le2013\)
TH 2
\(\hept{\begin{cases}x-2012\le0\\2013-x\le0\end{cases}}\)
\(\hept{\begin{cases}x\le2012\\-x\le-2013\end{cases}}\)
\(\hept{\begin{cases}x\le2012\\x\ge2013\end{cases}}\) \(\Rightarrow x=\varnothing\)
Vậy min A = 1 khi và chỉ khi \(2012\le x\le2013\)
Áp dụng BĐT |a|+|b|≥|a+b| ta có:
P=|x−2012|+|x−2013|
=|2012−x|+|x−2013
≥|2012−x+x−2013|=1
Đẳng thức xảy ra khi 2012≤x≤2013
Vậy với 2012≤x≤2013 thì PMin=1
AI GIÚP MIK VỚI