K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2021

Bài 1:

a.Xét tam giác PNM và tam giác PQR ,ta có :

A^=Q^(= 90 độ )

P1^= P2^(đối đỉnh )

=>tam giác PNMđồng dạng tam giác PQR

b.ta có: MN//PR

=>NPtrên PQ=MN trên QR

=>x=3 nhân 6 trên 2

=>x=9

11 tháng 9 2021

Ánh sáng yếu lắm , với cả chữ hơi khó đọc , hay viết tắt , nếu chứ khó đọc thì hãy viết mực xanh nhìn sáng với cả dễ đọc hơn nhiều đó bn .viết lại đi nếu biết mik trả lời cho nha okay !

30 tháng 11 2021

dễ nhưng ko bit làm

11 tháng 5 2021

viết lại đi lắn nót vào mới đọc được và hiểu được để mà trả lời chứ viết rõ chữ vào đừng viết tắt

10 tháng 1 2023

lười học thế

 

10 tháng 1 2023

suốt ngày chép mạng

 

12 tháng 11 2023

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

Xét tứ giác ABDC có

H là trung điểm chung của AD và BC

nên ABDC là hình bình hành

Hình bình hành ABDC có AB=AC

nên ABDC là hình thoi

b: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=3\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=5^2-3^2=16\)

=>AH=4(cm)

AD=2*AH

=>AD=2*4=8(cm)

c: 

Xét tứ giác AHCF có

E là trung điểm chung của AC và HF

nên AHCF là hình bình hành

Hình bình hành AHCF có \(\widehat{AHC}=90^0\)

nên AHCF là hình chữ nhật

=>AH\(\perp\)AF và HC\(\perp\)FC

d: ABDC là hình thoi

=>\(\widehat{BAC}=\widehat{BDC}=60^0\)

ABDC là hình thoi

=>\(\widehat{ABD}+\widehat{BAC}=180^0\)

=>\(\widehat{ABD}=120^0\)

ABDC là hình thoi

=>\(\widehat{ABD}=\widehat{ACD}=120^0\)

21 tháng 10 2021

\(x.(x^2-2x+1)=x(x-1)^2\)

21 tháng 10 2021

Bạn có thể làm 3 dấu bằng đc ko.

13 tháng 8 2020

\(Q=\left(x^2+x+5\right)\left(5-x^2-x\right)=25-\left(x^2+x\right)^2\le25\)

Dấu = xảy ra khi \(x^2+x=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)

13 tháng 8 2020

=>   \(-Q=\left(x^2+x+5\right)\left(x^2+x-5\right)\)

=>   \(-Q=\left(x^2+x\right)^2-25\)

Có:   \(\left(x^2+x\right)^2\ge0\forall x\)

=>   \(-Q\ge-25\forall x\)

=>     \(Q\le25\)

DẤU "=" XẢY RA <=>   \(\left(x^2+x\right)^2=0\)

<=>   \(x^2+x=0\)

<=>   \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

VẬY Q MAX = 25 <=>    \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)