K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

\(\left|cosx\right|=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{1}{2}\\cosx=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\x=\pm\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{3}+k2\pi\)

NV
29 tháng 7 2021

\(\left|cosx\right|=\dfrac{1}{2}\)

\(\Leftrightarrow cos^2x=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{1+cos2x}{2}=\dfrac{1}{4}\)

\(\Leftrightarrow cos2x=-\dfrac{1}{2}\)

\(\Rightarrow2x=\pm\dfrac{2\pi}{3}+k2\pi\)

\(\Rightarrow x=\pm\dfrac{\pi}{3}+k\pi\)

NV
2 tháng 11 2021

\(sin\left(3x+\pi\right)=sin2x\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\pi=2x+k2\pi\\3x+\pi=\pi-2x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\pi+k2\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\)

(Lưu ý rằng \(x=-\pi+k2\pi\) và \(x=\pi+k2\pi\) là giống nhau về bản chất nên khi ghi nghiệm ghi là \(-\pi+k2\pi\) cũng được mà \(\pi+k2\pi\) cũng được)

NV
28 tháng 6 2021

Vậy hãy sử dụng 1 phương pháp giải khác tối ưu hơn:

\(\Leftrightarrow2sin^22x=1\)

\(\Leftrightarrow1-2sin^22x=0\)

\(\Leftrightarrow cos4x=0\)

\(\Leftrightarrow4x=\dfrac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)

Với cách giải này thì nghiệm được gộp luôn

1 tháng 5 2022

Ta có : \(f\left(2\right)=2a+b-6\)

\(\lim\limits_{x\rightarrow2^+}\dfrac{x-\sqrt{x+2}}{x^2-4}=\lim\limits_{x\rightarrow2^+}\dfrac{x^2-x-2}{\left(x-2\right)\left(x+2\right)\left(x+\sqrt{x+2}\right)}\)  

\(=\lim\limits_{x\rightarrow2^+}\dfrac{x+1}{\left(x+2\right)\left(x+\sqrt{x+2}\right)}=\dfrac{3}{16}\)

\(\lim\limits_{x\rightarrow2^-}x^2+ax+3b=4+2a+3b\) 

H/s liên tục tại điểm x = 2 \(\Leftrightarrow\dfrac{3}{16}=2a+3b+4=2a+b-6\)

Suy ra : \(a=\dfrac{179}{32};b=-5\) => t = a + b = 19/32 . Chọn C 

30 tháng 7 2021

Giống nhau tất thảy.

NV
30 tháng 7 2021

k ở đây được hiểu là "một số nguyên bất kì", giống hay khác nhau đều được

Ví dụ: 

\(sinx=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Thì "k" trong \(\dfrac{\pi}{6}+k2\pi\) và "k" trong \(\dfrac{5\pi}{6}+k2\pi\) không liên quan gì đến nhau (nó chỉ là 1 kí hiệu, có thể k trên bằng 0, k dưới bằng 100 cũng được, không ảnh hưởng gì, cũng có thể 2 cái bằng nhau cũng được).

Khi người ta ghi 2 nghiệm đều là "k2pi" chủ yếu do... lười biếng (kiểu như mình). Trên thực tế, rất nhiều tài liệu cũ họ ghi các kí tự khác nhau, ví dụ 1 nghiệm là \(\dfrac{\pi}{6}+k2\pi\), 1 nghiệm là \(\dfrac{5\pi}{6}+n2\pi\) để tránh học sinh phát sinh hiểu nhầm đáng tiếc rằng "2 cái k phải giống hệt nhau về giá trị". 

NV
7 tháng 10 2021

\(\Leftrightarrow\left[{}\begin{matrix}3x=x+k2\pi\\3x=-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{k\pi}{2}\)

\(0< \dfrac{k\pi}{2}< 2017\pi\Rightarrow0< k< 4034\)

Có \(4033\) nghiệm (tất cả các đáp án đều sai)

NV
5 tháng 7 2021

Đề là:

\(y=\sqrt{4-3cos^23x}+1\) đúng không nhỉ?

Ta có:

\(0\le cos^23x\le1\Rightarrow1\le\sqrt{4-3cos^23x}\le2\)

\(\Rightarrow2\le y\le3\)

\(y_{min}=2\) khi \(cos^23x=1\)

\(y_{max}=3\) khi \(cos3x=0\)

7A

8B

9C

10A

11D

12A

13B

14C

15A

27 tháng 6 2021

TXĐ: `D=RR\\{π/2+kπ ; -π/4 +kπ}`

Mà `-π/2+k2π` và `π/2+k2π \in π/2 +kπ`

`=>` Không nằm trong TXĐ.