K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔAMB có 

MD là đường phân giác ứng với cạnh AB

nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}\)(1)

Xét ΔAMC có 

ME là đường phân giác ứng với cạnh AC

nên \(\dfrac{AE}{EC}=\dfrac{AM}{MC}\)(2)

Ta có: M là trung điểm của BC(gt)

nên MB=MC(3)

Từ (1), (2) và (3) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

hay DE//BC(đpcm)

8 tháng 5 2022

8 tháng 5 2022

19 tháng 9 2018

Bài 1 :

1) 4x2 - y2 = ( 2x + y ) ( 2x - y )
2) 9x2 - 4y2 = ( 3x - 2y ) ( 3x + 2y )

3) 4x2 + y2 + 4xy = ( 2x + y )2

Bài 2:

1) 2x2 + 8x = 0

=> 2x ( x + 4 ) = 0

=> \(\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\) 

=> \(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

2) 3 ( x - 4 ) + x2 - 4x = 0

=> 3 ( x - 4 ) + x ( x - 4 ) = 0

=> ( x - 4 ) ( 3 + x ) = 0

=> \(\orbr{\begin{cases}x-4=0\\3+x=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)

3) 3 ( x - 2 ) = x2 - 2x 

=> 3 ( x - 2 ) - x2 + 2x = 0

=> 3 ( x - 2 ) - x ( x - 2 ) = 0

=> ( x - 2 ) ( 3 - x ) = 0

=> \(\orbr{\begin{cases}x-2=0\\3-x=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

4) x ( x - 2 ) - 6 ( 2 - x ) = 0

=> x ( x - 2 ) + 6 ( x - 2 ) = 0

=> ( x - 2 ) ( x + 6 ) = 0

=> \(\orbr{\begin{cases}x-2=0\\x+6=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)

5) 2x ( x + 5 ) = x2 + 5x

=> 2x ( x + 5 ) - x2 - 5x = 0

=> 2x ( x + 5 ) - x ( x + 5 ) = 0

=> ( x + 5 ) ( 2x - x ) = 0

=> \(\orbr{\begin{cases}x+5=0\\2x-x=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-5\\x=0\end{cases}}\)

6 ) ( x - 2 )2 - x ( x + 3 ) = 9

=> x2 - 4x + 4 - x2 - 3x = 9

=> - 7x + 4 = 9

=> - 7x = 5

=> x = \(-\frac{5}{7}\)

19 tháng 9 2018

\(1,4x^2-y^2=\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)

\(2,9x^2-4y^2=\left(3x\right)^2-\left(2y\right)^2=\left(3x-2y\right)\left(3x+2y\right)\)

\(3,4x^2+y^2+4xy=\left(2x\right)^2+2.2x.y+y^2=\left(2x+y\right)^2\)

\(1,2x^2+8x=0\Rightarrow2x\left(x+4\right)=0\Rightarrow\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

\(2,3\left(x-4\right)+x^2-4x=0\)

\(\Rightarrow3\left(x-4\right)+x\left(x-4\right)=0\)

\(\Rightarrow\left(3+x\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3+x=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)

\(3,3\left(x-2\right)=x^2-2x\)

\(\Rightarrow3\left(x-2\right)-x^2+2x=0\)

\(\Rightarrow3\left(x-2\right)-x\left(x-2\right)=0\)

\(\Rightarrow\left(3-x\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3-x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

\(4,x\left(x-2\right)-6\left(2-x\right)=0\)

\(\Rightarrow x\left(x-2\right)+6\left(x-2\right)=0\)

\(\Rightarrow\left(x+6\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+6=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-6\\x=2\end{cases}}\)

26 tháng 3 2021

Bài 1:

a.Xét tam giác PNM và tam giác PQR ,ta có :

A^=Q^(= 90 độ )

P1^= P2^(đối đỉnh )

=>tam giác PNMđồng dạng tam giác PQR

b.ta có: MN//PR

=>NPtrên PQ=MN trên QR

=>x=3 nhân 6 trên 2

=>x=9

\(AC=\sqrt{5^2+12^2}=13\left(cm\right)\)

Sxq=(5+12+13)*8=8*30=240cm2

Stp=240+2*12*5=360cm2

25 tháng 9 2021

\(a^3+3a^2b+3ab^2+b^3-2022=\left(a+b\right)^3-2022=\left(2021-2020\right)^3-2022=1-2022=-2021\)

25 tháng 9 2021

đi ngủ đi iem à, trễ gòi :v

17 tháng 12 2021

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

12 tháng 11 2023

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

Xét tứ giác ABDC có

H là trung điểm chung của AD và BC

nên ABDC là hình bình hành

Hình bình hành ABDC có AB=AC

nên ABDC là hình thoi

b: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=3\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=5^2-3^2=16\)

=>AH=4(cm)

AD=2*AH

=>AD=2*4=8(cm)

c: 

Xét tứ giác AHCF có

E là trung điểm chung của AC và HF

nên AHCF là hình bình hành

Hình bình hành AHCF có \(\widehat{AHC}=90^0\)

nên AHCF là hình chữ nhật

=>AH\(\perp\)AF và HC\(\perp\)FC

d: ABDC là hình thoi

=>\(\widehat{BAC}=\widehat{BDC}=60^0\)

ABDC là hình thoi

=>\(\widehat{ABD}+\widehat{BAC}=180^0\)

=>\(\widehat{ABD}=120^0\)

ABDC là hình thoi

=>\(\widehat{ABD}=\widehat{ACD}=120^0\)