Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài `1`
\(a,A=a\left(a+b\right)-b\left(a+b\right)\\ =\left(a+b\right)\left(a-b\right)\)
Với `a=9;=10`
Ta có :
\(\left(a+b\right)\left(a-b\right)\\=\left(9+10\right)\left(9-10\right)\\ =19.\left(-1\right)\\ =-19\)
\(b,B=\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(3x+2\right)\left(3x-2\right)\\ =\left(3x+2\right)^2-2\left(3x+2\right)\left(3x-2\right)+\left(3x-2\right)^2\\ =\left[\left(3x+2\right)-\left(3x-2\right)\right]^2\)
Với `x=-4`
Ta có :
\(\left[\left(3x+2\right)-\left(3x-2\right)\right]^2\\ =\left(3.4+2-3.4+2\right)^2\\ =\left(12+2-12+2\right)^2\\ =4^2\\ =16\)
\(2,\\ x^3-6x^2+9x\\ =x\left(x^2-6x+9\right)\\ =x\left(x-3\right)^2\\ x^2-2x-4y^2-4y\\ \)
`->` có đúng đề ko cậu
2:
b; x^2-4y^2-2x-4y
=(x-2y)*(x+2y)-2(x+2y)
=(x+2y)(x-2y-2)
a: x^3-6x^2+9x
=x(x^2-6x+9)
=x(x-3)^2
Bài 1:
a) \(x^2-6x+15=\left(x^2-6x+9\right)+6=\left(x-3\right)^2+6\ge6\)
Dấu "=" xảy ra \(\Leftrightarrow x=3\)
b) \(3x^2-15x+4=3\left(x^2-5x+\dfrac{25}{4}\right)-\dfrac{59}{4}=3\left(x-\dfrac{5}{2}\right)^2-\dfrac{59}{4}\ge-\dfrac{59}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
Bài 2:
a) \(\Rightarrow\left(x-5\right)\left(x+5\right)+2\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)
c) \(\Rightarrow x^2\left(x-2\right)+7\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+7\right)=0\)
\(\Rightarrow x=2\left(do.x^2+7\ge7>0\right)\)
5x -1 =4x -2
<=> 5x -1 -4x + 2 = 0
<=> x + 1 = 0
<=> x = -1
Vậy -1 là nghiệm của phương trình trên
* Với x=1 \(\Rightarrow\)pt có dạng; 5.1- 1 = 4.1 - 2
\(\Rightarrow\)4=2 (vô lý)
\(\Rightarrow\)x=1 không phải là nghiệm của pt
*Với x=-1\(\Rightarrow\)pt có dạng: 5.(-1) -1 = 4.(-1) -2
\(\Rightarrow\)-6 = -6( luôn đúng)
\(\Rightarrow\)x= -1 là nghiệm của pt
nói thật là bài tập này dễ trên cả dễ. à , nhớ kết bạn với mk nha
1: \(=\dfrac{\dfrac{x^2+y^2-2xy}{xy}}{\dfrac{x^2-y^2}{xy}}\)
\(=\dfrac{\left(x-y\right)^2}{xy}:\dfrac{\left(x-y\right)\left(x+y\right)}{xy}=\dfrac{x-y}{x+y}\)
2: \(=\dfrac{x^2-1+x^2}{x\left(x+1\right)}:\dfrac{x^2-x^2+1}{x\left(x+1\right)}\)
\(=\dfrac{2x^2-1}{1}=2x^2-1\)
Vì VT không âm nên VP không âm => 12x ≥ 0 <=> x ≥ 0
Với x ≥ 0 pt <=> x + 1 + 2x + 1 + 3x + 5 + 5x + 2 = 12x
<=> 11x + 9 = 12x
<=> -x = -9 <=> x = 9 (tm)
Vậy x = 9