Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Hàm số nghịch biến trên R
b: \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2-4x_1+5-x_2^2+4x_2-5}{x_1-x_2}\)
\(=x_1+x_2-4\)
Trường hợp 1: x<=2
\(\Leftrightarrow x_1+x_2-4< =0\)
Vậy: Hàm số nghịch biến khi x<=2
\(\left(2x+x^2\right)\left(x^2-3x+2\right)=0\Leftrightarrow x\left(x+2\right)\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\\x=2\end{matrix}\right.\\ A=\left\{-2;0;1;2\right\}\)
\(3\le x^3\le27\Leftrightarrow x\in\left\{2;3\right\}\\ B=\left\{2;3\right\}\)
\(\Leftrightarrow A\cup B=\left\{-2;0;1;2;3\right\}\)
1.
Phương trình có 2 nghiệm dương pb khi:
\(\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-\left(2m+46\right)=m^2-45>0\\x_1+x_2=2\left(m+1\right)>0\\x_1x_2=2m+46>0\end{matrix}\right.\) \(\Rightarrow m>3\sqrt{5}\)
Khi đó:
\(\left|\sqrt{x_1}-\sqrt{x_2}\right|=2\)
\(\Leftrightarrow x_1+x_2-2\sqrt{x_1x_2}=4\)
\(\Leftrightarrow2\left(m+1\right)-2\sqrt{2m+46}=4\)
\(\Leftrightarrow2m+46-2\sqrt{2m+46}-48=0\)
Đặt \(\sqrt{2m+46}=a>0\)
\(\Rightarrow a^2-2a-48=0\Leftrightarrow\left[{}\begin{matrix}a=8\\a=-6\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2m+46}=8\)
\(\Rightarrow m=9\)
2.
Kết hợp pt thứ 2 và điều kiện đề bài ta được:
\(\left\{{}\begin{matrix}mx+3y=m+3\\x-3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)x=m+5\\x-3y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\x=\dfrac{m+5}{m+1}\\y=\dfrac{-m+3}{3\left(m+1\right)}\end{matrix}\right.\)
Thay vào pt đầu:
\(\Rightarrow\dfrac{2\left(m+5\right)}{m+1}+\dfrac{\left(m-1\right)\left(-m+3\right)}{3\left(m+1\right)}=4\)
\(\Rightarrow m^2-2m-15=0\Rightarrow\left[{}\begin{matrix}m=-5\\m=3\end{matrix}\right.\)
5:
a: sin x=2*cosx
\(A=\dfrac{6cosx+2cosx-4\cdot8\cdot cos^3x}{cos^3x-2cosx}\)
\(=\dfrac{8-32cos^2x}{cos^2x-2}\)
b: VT=sin^4(pi/2-x)+cos^4(x+pi/2)+6*1/2*sin^22x+1/2*cos4x
=cos^4x+sin^4x+3*sin^2(2x)+1/2*(1-2*sin^2(2x))
=1-2*sin^2x*cos^2x+3*sin^2(2x)+1/2-sin^2(2x)
==3/2=VP