Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) \(7x-14=0\Leftrightarrow7x=14\Leftrightarrow x=2\)2
Vậy tập nghiệm của phương trình là S={2}
b) \(\left(3x-1\right)\left(2x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x-1=0\\2x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}}\)
Vậy......................
c)\(\left(3x-1\right)=x-2\)
\(\Leftrightarrow\)\(3x-1-x+2=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)Vậy...................
Câu 2:a)
\(2x+5\le9\Leftrightarrow2x\le4\)
\(\Leftrightarrow x\le2\)vậy......
b)\(3x+4< 5x-3\)
\(\Leftrightarrow2x>7\Leftrightarrow x>\frac{2}{7}\)
Vậy..........
c)\(\frac{\left(3x-1\right)}{4}>2\)
\(\Leftrightarrow3x-1>8\)
\(\Leftrightarrow3x>9\Leftrightarrow x>3\)
vậy.............
Câu 3:a).....
b) Áp dụng định lí pytago vào \(\Delta\)vuong ABC,có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=144+256=20^2\)
\(\Leftrightarrow BC=20\)
Xét \(\Delta\)vuông ABC và \(\Delta\)vuông HBA, có:
\(\widehat{BAH}=\widehat{ACH}\)(cùng phụ với góc ABC)
\(\Rightarrow\Delta\)ABC đồng dạng với\(\Delta\)HBA(g.g)
\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\)
\(\frac{\Rightarrow16}{AH}=\frac{20}{16}\Rightarrow AH=12,8\left(cm\right)\)
5x-2>2(x+3)\(\Leftrightarrow\)5x-2>2x+6
\(\Leftrightarrow\) 5x-2x>6+2
\(\Leftrightarrow\)3x>8
\(\Leftrightarrow\)x>\(\dfrac{8}{3}\)
0 8/3
Chúc bn học tốt❤
\(\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)
<=> \(\frac{60x-8-6\left(2x^2-x\right)}{12}\ge\frac{4x\left(1-3x\right)-15x}{12}\)
<=> \(60x-8-12x^2+6x\ge4x-12x^2-15x\)
<=> \(47x\ge8\)
<=> \(x\ge\frac{8}{47}\)
Ta có: x ( x2 + 2 ) > x3 - x + 6 (1)
<=> x3 + 2x > x3 - x + 6
<=> 3x > 6
<=> x > 2
Vậy tập nghiệm của phương trình (1) là S = { x | x > 2 }
a, (1-x)(5x+3)= (3x-8)(1-x)
<=> (1-x) (5x+3) - (3x-8)(1-x) =0 <=> (1-x) (2x+11) = 0
\(\Leftrightarrow\left[{}\begin{matrix}1-x=0\\2x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{11}{2}\end{matrix}\right.\)
Vậy.........
b, (x-3)(x+4)-2(3x-2)=(x-4)^2
<=> 3x = 24<=> x=8
Vậy .......
c,x^2+ x^3+x+1=0
<=> x^2 (x+1) +(x+1) =0 <=> (x^2 +1)(x+1) =0
<=> x+1 =0 => x=-1
Vậy.......
d, \(\dfrac{x-3}{x+3}-\dfrac{2}{x-3}=\dfrac{3x+1}{9-x^2}\)
\(\Leftrightarrow x^2-6x+9-2x-6=-3x-1\)
\(\Leftrightarrow x^2-5x+4=0\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)
Vậy...........
1.: Áp dụng BĐT Cauchy-Schwarz cho 3 số dương
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
Thiếu vế phải rồi bạn
Sorry bn tai vua nay no bi loi