K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2022

Ta có : \(9=a^2+a^2+b^2+a^2+b^2+bc+bc+c^2+c^2\ge9\sqrt[9]{a^6\cdot b^6\cdot c^6}=9\sqrt[3]{a^2\cdot b^2\cdot c^2}\Rightarrow abc\le1\) Áp dụng bđt Cô-si vào các số dương : \(a^2+\dfrac{1}{b^2}+\dfrac{1}{b^2}+\dfrac{1}{b^2}\ge4\sqrt[4]{\dfrac{a^2}{b^6}}=4\sqrt{\dfrac{a}{b^3}}\Rightarrow\sqrt{a^2+\dfrac{3}{b^2}}\ge2\cdot\sqrt[4]{\dfrac{a}{b^3}}\)  

CM tương tự ta được: \(\sqrt{b^2+\dfrac{3}{c^2}}\ge2\sqrt[4]{\dfrac{b}{c^3}};\sqrt{c^2+\dfrac{3}{a^2}}\ge2\sqrt[4]{\dfrac{c}{a^3}}\Rightarrow P\ge2\cdot\left(\sqrt[4]{\dfrac{a}{b^3}}+\sqrt[4]{\dfrac{b}{c^3}}+\sqrt[4]{\dfrac{c}{a^3}}\right)\ge2\cdot3\cdot\sqrt[12]{\dfrac{a}{b^3}\cdot\dfrac{b}{c^3}\cdot\dfrac{c}{a^3}}=6\sqrt[12]{\dfrac{1}{\left(abc\right)^2}}=6\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

25 tháng 2 2022

Em cám ơn thầy đã giúp đỡ ạ!

 

NV
21 tháng 3 2022

Ta có:

\(\dfrac{a}{bc}+\dfrac{b}{ca}\ge2\sqrt{\dfrac{ab}{abc^2}}=\dfrac{2}{c}\)

Tương tự: \(\dfrac{a}{bc}+\dfrac{c}{ab}\ge\dfrac{2}{b}\) ; \(\dfrac{b}{ca}+\dfrac{c}{ab}\ge\dfrac{2}{a}\)

Cộng vế với vế: \(\Rightarrow\dfrac{a}{bc}+\dfrac{b}{ca}+\dfrac{c}{ab}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Rightarrow P\ge\dfrac{a^2+b^2+c^2}{2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Rightarrow P\ge\dfrac{1}{2}\left(a^2+\dfrac{1}{a}+\dfrac{1}{a}\right)+\dfrac{1}{2}\left(a^2+\dfrac{1}{b}+\dfrac{1}{b}\right)+\dfrac{1}{2}\left(c^2+\dfrac{1}{c}+\dfrac{1}{c}\right)\)

\(\Rightarrow P\ge\dfrac{1}{2}.3\sqrt[3]{\dfrac{a^2}{a^2}}+\dfrac{1}{2}.3\sqrt[3]{\dfrac{b^2}{b^2}}+\dfrac{1}{2}.3\sqrt[3]{\dfrac{c^2}{c^2}}=\dfrac{9}{2}\)

\(P_{min}=\dfrac{9}{2}\) khi \(a=b=c=1\)

NV
17 tháng 1 2021

Dự đoán điểm rơi xảy ra tại \(\left(a;b;c\right)=\left(3;2;4\right)\)

Đơn giản là kiên nhẫn tính toán và tách biểu thức:

\(D=13\left(\dfrac{a}{18}+\dfrac{c}{24}\right)+13\left(\dfrac{b}{24}+\dfrac{c}{48}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{2}{ab}\right)+\left(\dfrac{a}{18}+\dfrac{c}{24}+\dfrac{2}{ac}\right)+\left(\dfrac{b}{8}+\dfrac{c}{16}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{c}{12}+\dfrac{8}{abc}\right)\)

Sau đó Cô-si cho từng ngoặc là được

13 tháng 1 2022

Có cách nào làm ngắn hơn ko ạ

NV
6 tháng 4 2022

Ta có:

\(\left(b^2+c^2+1\right)\left(1+1+a^2\right)\ge\left(a+b+c\right)^2=9\)

\(\Rightarrow\dfrac{1}{b^2+c^2+1}\le\dfrac{a^2+2}{9}\)

\(\Rightarrow\dfrac{a}{b^2+c^2+1}\le\dfrac{a^3+2a}{9}\)

Tương tự: \(\dfrac{b}{c^2+a^2+1}\le\dfrac{b^3+2b}{9}\) ; \(\dfrac{c}{a^2+b^2+1}\le\dfrac{c^3+2c}{9}\)

Cộng vế:

\(VT\le\dfrac{a^3+b^3+c^3+2\left(a+b+c\right)}{9}=\dfrac{a^3+b^3+c^3+6}{9}\) (1)

Lại có:

\(\left(a^3+1+1\right)+\left(b^3+1+1\right)+\left(c^3+1+1\right)\ge3a+3b+3c\)

\(\Rightarrow a^3+b^3+c^3\ge3\Rightarrow6\le2\left(a^3+b^3+c^3\right)\) (2)

(1);(2) \(\Rightarrow VT\le\dfrac{a^3+b^3+c^3+2\left(a^3+b^3+c^3\right)}{9}=\dfrac{a^3+b^3+c^3}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

6 tháng 4 2022

Cách giải của  thầy rất tự nhiên, em cám ơn thầy ạ!

NV
6 tháng 3 2022

\(\dfrac{a}{a+2\sqrt{\left(a+bc\right)}}=\dfrac{a}{a+2\sqrt{a\left(a+b+c\right)+bc}}=\dfrac{a}{a+2\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(=\dfrac{a}{a+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}\)

\(\le\dfrac{a}{5^2}\left(\dfrac{1}{a}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}\right)\)

\(=\dfrac{a}{25}\left(\dfrac{1}{a}+\dfrac{8}{\sqrt{\left(a+b\right)\left(a+c\right)}}\right)=\dfrac{1}{25}+\dfrac{8}{25}.\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

Tương tự:

\(\dfrac{b}{b+2\sqrt{b+ac}}\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\)

\(\dfrac{c}{c+2\sqrt{c+ab}}\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)

Cộng vế:

\(P\le\dfrac{3}{25}+\dfrac{4}{25}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{15}{25}=\dfrac{3}{5}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

NV
6 tháng 4 2022

Ta có:

\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+b+c}}\le\dfrac{a\sqrt{1+b+c}}{a+b+c}\)

Tương tự: \(\dfrac{b}{\sqrt{b^2+a+c}}\le\dfrac{b\sqrt{1+c+a}}{a+b+c}\) ; \(\dfrac{c}{\sqrt{c^2+b+a}}\le\dfrac{c\sqrt{1+a+b}}{a+b+c}\)

Cộng vế:

\(P\le\dfrac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\)

Lại có:

\(a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}\)

\(=\sqrt{a}.\sqrt{a+ab+ac}+\sqrt{b}.\sqrt{b+bc+ab}+\sqrt{c}.\sqrt{c+ac+bc}\)

\(\le\sqrt{\left(a+b+c\right)\left(a+b+c+2ab+2bc+2ca\right)}\)

\(\Rightarrow P\le\dfrac{\sqrt{\left(a+b+c\right)\left(a+b+c+2ab+bc+ca\right)}}{a+b+c}=\sqrt{\dfrac{a+b+c+2ab+2bc+2ca}{a+b+c}}\)

Do đó ta chỉ cần chứng minh:

\(\dfrac{a+b+c+2ab+2bc+2ca}{a+b+c}\le3\Leftrightarrow a+b+c\ge ab+bc+ca\)

Thật vậy:

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)

\(\Rightarrow a+b+c\ge ab+bc+ca\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

6 tháng 3 2022

ca này để thầy lâm ròi:<

6 tháng 3 2022

:v

18 tháng 2 2022

ráng chờ thầy nguyễn việt lâm  onl r nhờ nghen:>

18 tháng 2 2022

Kiểu buff bẩn :)