K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

a, \(=x^3-4x+x^2+4x+4=x\left(x-2\right)\left(x+2\right)+\left(x+2\right)^2\)

\(=\left(x+2\right)\left[x\left(x-2\right)+x+2\right]=\left(x+2\right)\left(x^2-x+2\right)\)

b, \(=2x^3-x^2-2x^2+3x-1=x^2\left(2x-1\right)-\left(x-1\right)\left(2x-1\right)\)

\(=\left(2x-1\right)\left(x^2-x+1\right)\)

c, \(=x^4+x^3+x^3+x^2+x+1=x^3\left(x+1\right)+x^2\left(x+1\right)+x+1\)

\(=\left(x+1\right)\left(x^3+x^2+1\right)\)

15 tháng 8 2020

Em không hiểu câu b chị có thể giải thích đc không ạ.Em cảm ơn

=x^3(x+1)+x+1

=(x+1)(x^3+1)

=(x+1)^2(x^2-x+1)

12 tháng 6 2023

cảm ơn rất nhiều ạ 

 

 Mọi người làm nhanh hộ e với ạ, T7 e nộp rBài 1.Tính:a. x2(x–2x3) b. (x2+ 1)(5–x) c. (x–2)(x2+ 3x–4) d. (x–2)(x–x2+ 4)e. (x2–1)(x2+ 2x)   f. (2x–1)(3x + 2)(3–x)  g. (x + 3)(x2+ 3x–5)h (xy–2).(x3–2x–6)  i. (5x3–x2+ 2x–3).(4x2–x + 2)Bài 2.Tính:a. (x–2y)2   b. (2x2+3)2     c. (x–2)(x2+ 2x + 4)    d. (2x–1)2Bài 3: Rút gọn biểu thứca.(6x + 1)2+ (6x–1)2–2(1 + 6x)(6x–1)b. x(2x2–3)–x2(5x + 1) + x2.c. 3x(x–2)–5x(1–x)–8(x2–3)Bài 4: Tìm x, biếta. (x–2)2–(x–3)(x + 3) = 6.b....
Đọc tiếp

 

Mọi người làm nhanh hộ e với ạ, T7 e nộp rkhocroi

Bài 1.

Tính:

a. x2(x–2x3) b. (x2+ 1)(5–x) c. (x–2)(x2+ 3x–4) d. (x–2)(x–x2+ 4)

e. (x2–1)(x2+ 2x)   f. (2x–1)(3x + 2)(3–x)  g. (x + 3)(x2+ 3x–5)

h (xy–2).(x3–2x–6)  i. (5x3–x2+ 2x–3).(4x2–x + 2)

Bài 2.

Tính:

a. (x–2y)2   b. (2x2+3)2     c. (x–2)(x2+ 2x + 4)    d. (2x–1)2

Bài 3: Rút gọn biểu thức

a.(6x + 1)2+ (6x–1)2–2(1 + 6x)(6x–1)

b. x(2x2–3)–x2(5x + 1) + x2.

c. 3x(x–2)–5x(1–x)–8(x2–3)

Bài 4: Tìm x, biết

a. (x–2)2–(x–3)(x + 3) = 6.

b. 4(x–3)2–(2x–1)(2x + 1) = 10

c. (x–4)2–(x–2)(x + 2) = 6.

d. 9 (x + 1)2–(3x–2)(3x + 2) = 10

Bài 5:Phân tích các đa thức sau thành nhân tử

a. 1–2y + y2

b. (x + 1)2–25

c. 1–4x2

d. 8–27x3

e. 27 + 27x + 9x2+ x3

f. 8x3–12x2y +6xy2–y3

g. x3+ 8y3

Bài 6:Phân tích các đa thức sau thành nhân tử

a. 3x2–6x + 9x2

b. 10x(x–y)–6y(y–x)

c. 3x2+ 5y–3xy–5x

d. 3y2–3z2+ 3x2+ 6xy

e. 16x3+ 54y3

f. x2–25–2xy + y2

g. x5–3x4+ 3x3–x2

.

Bài 7: Phân tích đa thức thành nhân tử

a. 5x2–10xy + 5y2–20z2

b. 16x–5x2–3

c. x2–5x + 5y–y2

d. 3x2–6xy + 3y2–12z2

e. x2+ 4x + 3

f. (x2+ 1)2–4x2

g. x2–4x–5

1
13 tháng 9 2021

Bài 5: 

a. 1 - 2y + y2

= (1 - y)2

b. (x + 1)2 - 25

= (x + 1)2 - 52

= (x + 1 - 5)(x + 1 + 5)

= (x - 4)(x + 6)

c. 1 - 4x2

= 12 - (2x)2

= (1 - 2x)(1 + 2x)

d. 8 - 27x3

= 23 - (3x)3

= (2 - 3x)(4 + 6x + 9x2)

e. (đề hơi khó hiểu ''x3'' !?)

g. x3 + 8y3

= (x + 2y)(x2 - 2xy + y2)

3 tháng 4 2022

\(x^2-x+1-m=0\left(1\right)\\ \text{PT có 2 nghiệm }x_1,x_2\\ \Leftrightarrow\Delta=1-4\left(1-m\right)\ge0\\ \Leftrightarrow4m-3\ge0\Leftrightarrow m\ge\dfrac{3}{4}\\ \text{Vi-ét: }\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=1-m\end{matrix}\right.\\ \text{Ta có }5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\\ \Leftrightarrow5\cdot\dfrac{x_1+x_2}{x_1x_2}-x_1x_2+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m-1+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m+3=0\\ \Leftrightarrow5+\left(1-m\right)\left(m+3\right)=0\\ \Leftrightarrow m^2+2m-8=0\\ \Leftrightarrow m^2-2m+4m-8=0\\ \Leftrightarrow\left(m-2\right)\left(m+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(n\right)\\m=-4\left(l\right)\end{matrix}\right.\)

Vậy $m=2$

2 tháng 1 2022

Vì \(x_1\) là nghiệm PT nên \(x_1^2+3x_1-7=0\Leftrightarrow x_1^2=7-3x_1\)

\(F=x_1^2-3x_2-2013=7-3x_1-3x_2-2013\\ F=-3\left(x_1+x_2\right)-2006\)

Mà theo Viét ta có \(x_1+x_2=-3\)

\(\Rightarrow F=\left(-3\right)\left(-3\right)-2006=-1997\)

25 tháng 8 2020

a,\(\left(x^2+x\right)2+3\left(x^2+x\right)+2\)

=\(\left(x^2+x\right)6+2\)

b,\(\left(x^2+x\right)2-2\left(x^2+x\right)-15\)

=\(-4\left(x^2+x\right)-15\)

c,\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

=\(\left(x^2+x+1\right)\left(x^2+x+1\right)+1-12\)

=\(\left(x^2+x+1\right)^2-11\)

d,\(\left(x^2+x\right)2+4x^2+4x-12\)

=\(x\left(x+1\right)2+2x\left(x+1\right)-12\)

=\(2x\left(x+1\right)+2x\left(x+1\right)-12\)

=\(\left(x+1\right)\left(2x+2x-12\right)\)

= \(\left(x+1\right)\left(4x-12\right)=4\left(x+1\right)\left(x-3\right)\)

e,\(\left(x^2+2x\right)2+9x^2+18x+20\)

=\(x\left(x+2\right)2+9x\left(x+2\right)+20\)

=\(2x\left(x+2\right)+9x\left(x+2\right)+20=\left(x+2\right)\left(2x+9x+20\right)\)

=\(\left(x+2\right)\left(11x+20\right)\)

25 tháng 8 2020

thực ra mk cx ko chắc là đúng hết nha

14 tháng 3 2018

\(3x^2+4x+1=3x^2+3x+x+1=\left(x+1\right)\left(3x+1\right)\)

29 tháng 11 2018

3x2 + 8x + 2 = 0

Có a = 3; b' = 4; c = 2

⇒ Δ’ = 42 – 2.3 = 10 > 0

⇒ Phương trình có hai nghiệm phân biệt:

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

30 tháng 8 2017

* Chứng minh:

Phương trình a x 2   +   b x   +   c   =   0 có hai nghiệm  x 1 ;   x 2

⇒ Theo định lý Vi-et: Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khi đó : a.(x – x1).(x – x2)

= a.(x2 – x1.x – x2.x + x1.x2)

= a.x2 – a.x.(x1 + x2) + a.x1.x2

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

=   a . x 2   +   b x   +   c   ( đ p c m ) .

* Áp dụng:

a)  2 x 2   –   5 x   +   3   =   0

Có a = 2; b = -5; c = 3

⇒ a + b + c = 2 – 5 + 3 = 0

⇒ Phương trình có hai nghiệm Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy: Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)  3 x 2   +   8 x   +   2   =   0

Có a = 3; b' = 4; c = 2

⇒  Δ ’   =   4 2   –   2 . 3   =   10   >   0

⇒ Phương trình có hai nghiệm phân biệt:

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9