K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
24 tháng 3 2022

hàm số \(y=x^0\text{ cũng chính là đường thẳng }y=1\) đây là một đường thẳng vuông góc với trục Oy tại điểm (0,1) thôi 

còn hàm \(y=\frac{1}{x}\Rightarrow y'=-\frac{1}{x^2}< 0\forall x\) nên hàm số nghịch biến trên R.

 Đồ thị hàm số

undefined

24 tháng 3 2022
...................
NV
23 tháng 10 2021

\(y=\dfrac{2x-1}{x+m}\Rightarrow y'=\dfrac{2m+1}{\left(x+m\right)^2}\)

Hàm nghịch biến trên miền xác định khi:

\(2m+1< 0\Rightarrow m< -\dfrac{1}{2}\)

23 tháng 10 2019

\(x^{2019}-y^{2019}+2\left(x-y\right)=0\)

<=> \(\left(x-y\right)\left(x^{2018}+x^{2017}y+...+xy^{2017}+y^{2018}\right)+2\left(x-y\right)=0\)

<=> \(\left(x-y\right)\left(x^{2018}+x^{2017}y+...+xy^{2017}+y^{2018}+2\right)=0\)(1)

Có: \(x^{2018}+x^{2017}y+...+xy^{2017}+y^{2018}+2>0\)mọi x, y.

(1) <=> \(x-y=0\)

<=> x = y

Thế vào P ta có:

\(P=x^4-2x^2+2=\left(x^2-1\right)^2+1\ge1\)

"=" xảy ra <=> \(y=x=\pm1\)

Vậy min P =1 khi và chỉ khi x = y =1 hoặc x = y =-1.

30 tháng 5 2023

loading...

loading...

30 tháng 5 2023

loading...  

NV
27 tháng 2 2023

\(P=\left(x-y\right)+\left(y-z\right)+z+\dfrac{81}{z\left(x-y\right)\left(y-z\right)}+12\)

\(P\ge4\sqrt[4]{\left(x-y\right)\left(y-z\right).z.\dfrac{81}{z\left(x-y\right)\left(y-z\right)}}+12=24\)

\(P_{min}=24\) khi \(\left(x;y;z\right)=\left(9;6;3\right)\)

27 tháng 10

đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,

 

NV
2 tháng 11 2021

Đặt tên các điểm như hình vẽ, với H là trung điểm AB

\(\Rightarrow\widehat{SHO}=60^0\) (là góc giữa thiết diện và đáy nón)

Tam giác SAB đều \(\Rightarrow SH=\dfrac{AB\sqrt{3}}{2}=2\sqrt{3}\) (trung tuyến tam giác đều)

\(\Rightarrow\left\{{}\begin{matrix}OH=SH.cos60^0=\sqrt{3}\\h=SO=SH.sin60^0=3\end{matrix}\right.\)

\(R=OA=\sqrt{AH^2+OH^2}=\sqrt{2^2+3}=\sqrt{7}\)

\(\Rightarrow V=\dfrac{1}{3}\pi R^2h=\dfrac{1}{3}\pi.7.3=7\pi\left(cm^3\right)\)

NV
2 tháng 11 2021

undefined

17 tháng 11 2022

xác định để thầy việt lâm lm òi, cj ráng chờ nghe 

10 tháng 3 2022

Mình ko phải thầy việt lâm thì mình làm có được ko nhỉ kk :v

\(A,B\in d\Rightarrow\left\{{}\begin{matrix}A\left(t_A+2;-4t_A+1;-t_A+3\right)\\B\left(t_B+2;-4t_B+1;-t_B+3\right)\end{matrix}\right.\)

\(\overrightarrow{AM}=\left(-1-t_A;4t_A-2;-2+t_A\right);\overrightarrow{BM}=\left(-1-t_B;4t_B-2;-2+t_B\right)\)

\(\overrightarrow{AM}.\overrightarrow{BM}=0\Leftrightarrow\left(1+t_A\right)\left(1+t_B\right)+\left(4t_A-2\right)\left(4t_B-2\right)+\left(t_A-2\right)\left(t_B-2\right)=0\)

\(\left|\overrightarrow{AM}\right|=\left|\overrightarrow{BM}\right|\Leftrightarrow\left(t_A+1\right)^2+\left(4t_A-2\right)^2+\left(t_A-2\right)^2=\left(t_B+1\right)^2+\left(4t_B-2\right)^2+\left(t_B-2\right)^2\)

hệ phương trình 2 ẩn, đến đây là việc của bạn r :v

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Bài 1:

Ta nhớ công thức \(\sin^2x=\frac{1-\cos 2x}{2}\). Áp dụng vào bài toán:

\(F(x)=8\int \sin^2\left(x+\frac{\pi}{12}\right)dx=4\int \left [1-\cos \left(2x+\frac{\pi}{6}\right)\right]dx\)

\(\Leftrightarrow F(x)=4\int dx-4\int \cos \left(2x+\frac{\pi}{6}\right)dx=4x-2\int \cos (2x+\frac{\pi}{6})d(2x+\frac{\pi}{6})\)

\(\Leftrightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+c\)

Giải thích 1 chút: \(d(2x+\frac{\pi}{6})=(2x+\frac{\pi}{6})'dx=2dx\)

\(F(0)=8\Rightarrow -1+c=8\Rightarrow c=9\)

\(\Rightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+9\)

Câu 2:

Áp dụng nguyên hàm từng phần như bài bạn đã đăng:

\(\Rightarrow F(x)=-xe^{-x}-e^{-x}+c\)

\(F(0)=1\Rightarrow -1+c=1\Rightarrow c=2\)

\(\Rightarrow F(x)=-e^{-x}(x+1)+2\), tức B là đáp án đúng