Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(1;-1\right)\\\overrightarrow{BC}=\left(-3;4\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{u}=3\overrightarrow{AB}+2\overrightarrow{BC}=\left(-3;5\right)\)
Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(1-x;5-y\right)\)
Để ABCD là hbh \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-x=1\\5-y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=6\end{matrix}\right.\)
\(\Rightarrow D\left(0;6\right)\)
a.
\(\overrightarrow{a}.\overrightarrow{b}=2.\left(-3\right)+\left(-1\right).4=-10\)
b.
\(\overrightarrow{a}.\overrightarrow{b}=2.\left(-3\right)+5.1=-1\)
\(\left|\overrightarrow{a}\right|=\sqrt{2^2+\left(-1\right)^2}=\sqrt{5}\)
\(\left|\overrightarrow{b}\right|=\sqrt{x^2+1}\)
\(\Rightarrow\sqrt{x^2+1}=\sqrt{5}\Rightarrow x^2=4\)
\(\Rightarrow x=2;x=-2\)
Độ dài vectơ a là:
√[2² + (-1)²] = √5
Để độ dài của vectơ a bằng độ dài của vectơ b thì:
x² + 1 = 5
x² = 4
x = -2; x = 2
Chọn C
a.
\(\overrightarrow{u}=2\left(2;1\right)-\left(3;4\right)=\left(1;-2\right)\)
\(\overrightarrow{v}=3\left(3;4\right)-2\left(7;2\right)=\left(-5;8\right)\)
\(\overrightarrow{w}=5\left(7;2\right)+\left(2;1\right)=\left(37;11\right)\)
b.
\(\overrightarrow{x}=2\left(2;1\right)+\left(3;4\right)-\left(7;2\right)=\left(0;4\right)\)
\(\overrightarrow{z}=2\left(2;1\right)-3\left(3;4\right)+\left(7;2\right)=\left(2;-8\right)\)
c.
\(\overrightarrow{w}+\overrightarrow{a}=\overrightarrow{b}-\overrightarrow{c}\Rightarrow\overrightarrow{w}=\overrightarrow{b}-\overrightarrow{c}-\overrightarrow{a}\)
\(\Rightarrow\overrightarrow{w}=\left(3;4\right)-\left(7;2\right)-\left(2;1\right)=\left(-6;1\right)\)
Đặt \(\overrightarrow{b}=x\cdot\overrightarrow{a}+y\cdot\overrightarrow{c}\)
mà \(\overrightarrow{b}=\left(-1;-1\right);\overrightarrow{a}=\left(4;-2\right);\overrightarrow{c}=\left(2;5\right)\)
nên \(\left\{{}\begin{matrix}4x+2y=-1\\-2x+5y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x+2y=-1\\-4x+10y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12y=-3\\4x+2y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{1}{4}\\4x=-1-2y=-1-2\cdot\dfrac{-1}{4}=-1+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{1}{8}\\y=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy: \(\overrightarrow{b}=\dfrac{-1}{8}\cdot\overrightarrow{a}+\dfrac{-1}{4}\cdot\overrightarrow{c}\)