Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔABC nội tiếp
AB là đường kính
Do đó: ΔABC vuông tại C
Xét ΔABC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
Xét (B;BA) có
BA là bán kính
CA vuông góc BA tại A
Do đó: CA là tiếp tuyến của (B;BA)
Xét ΔABC có
BE,CF là đường phân giác
BE cắt CF tại I
Do đó: I là tâm đường tròn nội tiếpΔABC
=>d(I;BC)=d(I;AB)=d(I;AC) và AI là phân giác của góc BAC
ΔABC cân tại A
mà AI là phân giác
nên AI vuông góc BC tại D
=>d(I;BC)=ID
=>d(I;AB)=d(I;AC)=ID
=>AB,AC là tiếp tuyến của (I;ID)
Bài 2:
a: Xét (O) có
CM,CA là tiếp tuyến
Do đó: CM=CA và OC là phân giác của \(\widehat{AOM}\)
Xét (O) có
DM,DB là tiếp tuyến
Do đó: DM=DB và OD là phân giác của \(\widehat{BOM}\)
\(\widehat{AOM}+\widehat{BOM}=180^0\)(hai góc kề bù)
=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)
=>\(2\cdot\widehat{COD}=180^0\)
=>\(\widehat{COD}=90^0\)
b: CD=CM+MD
mà CM=CA và DM=DB
nên CD=CA+DB
c: Xét ΔOCD vuông tại O có OM là đường cao
nên \(MC\cdot MD=OM^2\)
=>\(AC\cdot BD=OM^2=R^2\) không đổi
a: T=20*5000-500=99500(ngàn đồng)
b: T=9000*8=72000
Số sản phẩm bán được sẽ thỏa mãn:
20n-500=72000
=>n-25=3600
=>n=3625
Bài 1:
Gọi O là trung điểm của BC
\(\Leftrightarrow OB=OC=\dfrac{BC}{2}\)
Ta có \(OA=\dfrac{BC}{2}=\dfrac{\sqrt{9^2+12^2}}{2}=7,5cm\) ( tính chất đg trung tuyến ứng với cạnh huyền trong tam giác vuông)
\(\Rightarrow OA=OB=OC\)
Suy ra tâm đường tròn đi qua ba điểm A,B,C là điểm O và có bán kính \(R=7,5cm\)
grsgrs
plssssssss