K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 3 2022

Gọi N là trung điểm AC \(\Rightarrow MN\) là đường trung bình tam giác ABC

\(\Rightarrow\left\{{}\begin{matrix}MN||AB\\MN=\dfrac{1}{2}AB=a\end{matrix}\right.\)

\(\Rightarrow\widehat{\left(AB;DM\right)}=\widehat{\left(MN;DM\right)}=\widehat{NMD}\)

\(DM=DN=\dfrac{2a.\sqrt{3}}{2}=a\sqrt{3}\) (trung tuyến tam giác đều cạnh 2a)

Định lý hàm cos cho tam giác NMD:

\(cos\widehat{NMD}=\dfrac{MN^2+DM^2-DN^2}{2MN.DM}=\dfrac{\sqrt{3}}{6}\)

20 tháng 2 2022

\(lim\left(n-\sqrt{n^2-4n+2}\right)\)

\(=lim\dfrac{n^2-\left(n^2-4n+2\right)}{n+\sqrt{n^2-4n+2}}\)

\(=lim\dfrac{4n-2}{n+\sqrt{n^2-4n+2}}\)

\(=lim\dfrac{4-\dfrac{2}{n}}{1+\sqrt{1-\dfrac{4}{n}+\dfrac{2}{n^2}}}\)

\(=2\)

20 tháng 9 2021

3.

\(y=\dfrac{1-sin^24x}{5}=\dfrac{cos^24x}{5}\)

\(cos4x\in\left[-1;1\right]\Rightarrow cos^24x\in\left[0;1\right]\Rightarrow y\in\left[0;\dfrac{1}{5}\right]\Rightarrow\left\{{}\begin{matrix}y_{min}=0\\y_{max}=\dfrac{1}{5}\end{matrix}\right.\)

20 tháng 9 2021

6.

\(y=sinx+cosx+2=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+2\)

\(sin\left(x+\dfrac{\pi}{4}\right)\in\left[-1;1\right]\Rightarrow y=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+2\in\left[-\sqrt{2}+2;\sqrt{2}+2\right]\)

\(\Rightarrow y_{min}=-\sqrt{2}+2\)

\(y_{max}=\sqrt{2}+2\)

1 tháng 5 2022

Ta có : \(f\left(2\right)=2a+b-6\)

\(\lim\limits_{x\rightarrow2^+}\dfrac{x-\sqrt{x+2}}{x^2-4}=\lim\limits_{x\rightarrow2^+}\dfrac{x^2-x-2}{\left(x-2\right)\left(x+2\right)\left(x+\sqrt{x+2}\right)}\)  

\(=\lim\limits_{x\rightarrow2^+}\dfrac{x+1}{\left(x+2\right)\left(x+\sqrt{x+2}\right)}=\dfrac{3}{16}\)

\(\lim\limits_{x\rightarrow2^-}x^2+ax+3b=4+2a+3b\) 

H/s liên tục tại điểm x = 2 \(\Leftrightarrow\dfrac{3}{16}=2a+3b+4=2a+b-6\)

Suy ra : \(a=\dfrac{179}{32};b=-5\) => t = a + b = 19/32 . Chọn C 

a: AO=a*căn 3/3

=>SO=a*căn 6/3

b: (SA,(ABC))=(AS;AO)=góc SAO

tan SAO=SO/OA=căn 2

=>góc SAO=55 độ

NV
29 tháng 6 2021

Các công thức lượng giác cơ bản liên quan đến góc của lớp 10:

\(sin\left(3\pi-x\right)=sin\left(2\pi+\pi-x\right)=sin\left(\pi-x\right)=sinx\)

\(sin\left(\dfrac{\pi}{2}+x\right)=cosx\Rightarrow sin\left(\dfrac{5\pi}{2}+x\right)=sin\left(2\pi+\dfrac{\pi}{2}+x\right)=sin\left(\dfrac{\pi}{2}+x\right)=cosx\)

\(cos\left(\dfrac{\pi}{2}+x\right)=-sinx\)

\(sin\left(\dfrac{3\pi}{2}+x\right)=sin\left(2\pi-\dfrac{\pi}{2}+x\right)=sin\left(-\dfrac{\pi}{2}+x\right)=-cosx\)

Nên pt tương đương:

\(3sin^2x-2sinx.cosx-5cos^2x=0\)

Với \(cosx=0\) không là nghiệm

Với \(cosx\ne0\) chia 2 vế cho \(cos^2x\)

\(\Rightarrow3tan^2x-2tanx-5=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\dfrac{5}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{5}{3}\right)+k\pi\end{matrix}\right.\)

a: BA vuông góc AD

BA vuông góc SA

=>BA vuông góc (SAD)

b: CD vuông góc AD

CD vuông góc SA

=>CD vuông góc (SAD)

=>(SCD) vuông góc (SAD)

c: (SD;(ABCD))=(DS;DA)=góc SDA

tan SDA=SA/AD=căn 6/2

=>góc SDA=51 độ

NV
15 tháng 3 2022

\(\left\{{}\begin{matrix}u_3=13\\u_5=23\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1+2d=13\\u_1+4d=23\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u_1=3\\d=5\end{matrix}\right.\)

NV
15 tháng 3 2022

Hàm \(f\left(x\right)\) ko xác định khi \(x+4=0\Rightarrow x=-4\)

\(\Rightarrow\) Hàm gián đoạn tại \(x=-4\)