Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
\(y=\dfrac{1-sin^24x}{5}=\dfrac{cos^24x}{5}\)
\(cos4x\in\left[-1;1\right]\Rightarrow cos^24x\in\left[0;1\right]\Rightarrow y\in\left[0;\dfrac{1}{5}\right]\Rightarrow\left\{{}\begin{matrix}y_{min}=0\\y_{max}=\dfrac{1}{5}\end{matrix}\right.\)
6.
\(y=sinx+cosx+2=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+2\)
\(sin\left(x+\dfrac{\pi}{4}\right)\in\left[-1;1\right]\Rightarrow y=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+2\in\left[-\sqrt{2}+2;\sqrt{2}+2\right]\)
\(\Rightarrow y_{min}=-\sqrt{2}+2\)
\(y_{max}=\sqrt{2}+2\)
Ta có : \(f\left(2\right)=2a+b-6\)
\(\lim\limits_{x\rightarrow2^+}\dfrac{x-\sqrt{x+2}}{x^2-4}=\lim\limits_{x\rightarrow2^+}\dfrac{x^2-x-2}{\left(x-2\right)\left(x+2\right)\left(x+\sqrt{x+2}\right)}\)
\(=\lim\limits_{x\rightarrow2^+}\dfrac{x+1}{\left(x+2\right)\left(x+\sqrt{x+2}\right)}=\dfrac{3}{16}\)
\(\lim\limits_{x\rightarrow2^-}x^2+ax+3b=4+2a+3b\)
H/s liên tục tại điểm x = 2 \(\Leftrightarrow\dfrac{3}{16}=2a+3b+4=2a+b-6\)
Suy ra : \(a=\dfrac{179}{32};b=-5\) => t = a + b = 19/32 . Chọn C
a: AO=a*căn 3/3
=>SO=a*căn 6/3
b: (SA,(ABC))=(AS;AO)=góc SAO
tan SAO=SO/OA=căn 2
=>góc SAO=55 độ
Các công thức lượng giác cơ bản liên quan đến góc của lớp 10:
\(sin\left(3\pi-x\right)=sin\left(2\pi+\pi-x\right)=sin\left(\pi-x\right)=sinx\)
\(sin\left(\dfrac{\pi}{2}+x\right)=cosx\Rightarrow sin\left(\dfrac{5\pi}{2}+x\right)=sin\left(2\pi+\dfrac{\pi}{2}+x\right)=sin\left(\dfrac{\pi}{2}+x\right)=cosx\)
\(cos\left(\dfrac{\pi}{2}+x\right)=-sinx\)
\(sin\left(\dfrac{3\pi}{2}+x\right)=sin\left(2\pi-\dfrac{\pi}{2}+x\right)=sin\left(-\dfrac{\pi}{2}+x\right)=-cosx\)
Nên pt tương đương:
\(3sin^2x-2sinx.cosx-5cos^2x=0\)
Với \(cosx=0\) không là nghiệm
Với \(cosx\ne0\) chia 2 vế cho \(cos^2x\)
\(\Rightarrow3tan^2x-2tanx-5=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\dfrac{5}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{5}{3}\right)+k\pi\end{matrix}\right.\)
a: BA vuông góc AD
BA vuông góc SA
=>BA vuông góc (SAD)
b: CD vuông góc AD
CD vuông góc SA
=>CD vuông góc (SAD)
=>(SCD) vuông góc (SAD)
c: (SD;(ABCD))=(DS;DA)=góc SDA
tan SDA=SA/AD=căn 6/2
=>góc SDA=51 độ
\(\left\{{}\begin{matrix}u_3=13\\u_5=23\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1+2d=13\\u_1+4d=23\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u_1=3\\d=5\end{matrix}\right.\)
Hàm \(f\left(x\right)\) ko xác định khi \(x+4=0\Rightarrow x=-4\)
\(\Rightarrow\) Hàm gián đoạn tại \(x=-4\)
Gọi N là trung điểm AC \(\Rightarrow MN\) là đường trung bình tam giác ABC
\(\Rightarrow\left\{{}\begin{matrix}MN||AB\\MN=\dfrac{1}{2}AB=a\end{matrix}\right.\)
\(\Rightarrow\widehat{\left(AB;DM\right)}=\widehat{\left(MN;DM\right)}=\widehat{NMD}\)
\(DM=DN=\dfrac{2a.\sqrt{3}}{2}=a\sqrt{3}\) (trung tuyến tam giác đều cạnh 2a)
Định lý hàm cos cho tam giác NMD:
\(cos\widehat{NMD}=\dfrac{MN^2+DM^2-DN^2}{2MN.DM}=\dfrac{\sqrt{3}}{6}\)