Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\dfrac{2-\sqrt{3}}{3\sqrt{6}}=\dfrac{2\sqrt{6}-3\sqrt{2}}{18}\)
b: \(\dfrac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{3}-\sqrt{2}\)
Bài 3:
\(a,=\dfrac{53\left(9+2\sqrt{7}\right)}{53}+2\sqrt{7}-5=9+2\sqrt{7}+2\sqrt{7}-5=4+4\sqrt{7}\)
a: Sửa đề: \(\dfrac{53}{9-2\sqrt{7}}+2\sqrt{7}-5\)
\(=9+2\sqrt{7}+2\sqrt{7}-5\)
\(=4\sqrt{7}+4\)
Bài 1:
a: \(-xy\sqrt{\dfrac{y}{x}}=-xy\cdot\dfrac{\sqrt{xy}}{x}=-y\sqrt{xy}\)
b: \(\sqrt{\dfrac{-3x^2}{35}}=\dfrac{\sqrt{105}x}{35}\)
bài 3:
b: \(\dfrac{2}{\sqrt{3}+1}+\dfrac{1}{2-\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}\)
\(=\sqrt{3}-1+2+\sqrt{3}+\sqrt{3}-1\)
\(=3\sqrt{3}\)
Câu 2:
Ta có: \(\sqrt{x^2-4x+4}=x-1\)
\(\Leftrightarrow2-x=x-1\left(x< 2\right)\)
\(\Leftrightarrow-2x=-3\)
hay \(x=\dfrac{3}{2}\left(tm\right)\)
4:
1: S=1,2^2*3,14=4,5216m3
2:
a: góc ABC+góc ABF=180 độ
=>B,C,F thẳng hàng
góc CDF=góc CEF=90 độ
=>CDEF nội tiếp
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>\(\widehat{AMB}=90^0\)
b: Xét ΔOMC vuông tại M có MH là đường cao
nên \(HC\cdot HO=HM^2\left(1\right)\)
Xét ΔMAB vuông tại M có MH là đường cao
nên \(HA\cdot HB=HM^2\left(2\right)\)
Từ (1) và (2) suy ra \(HC\cdot HO=HA\cdot HB\)
c: Xét tứ giác AMBQ có
O là trung điểm của AB và MQ
Do đó: AMBQ là hình bình hành
Hình bình hành AMBQ có AB=MQ
nên AMBQ là hình bình hành