Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điện trở tương đương của đoạn mạch là:
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{30.60}{30+60}=20\left(\Omega\right)\)
Do mắc song song nên \(U=U_1=U_2=30V\)
Cường độ dòng điện chạy qua mạch chính và mỗi mạch rẽ:
\(\left\{{}\begin{matrix}I=\dfrac{U}{R_{tđ}}=\dfrac{30}{20}=1,5\left(A\right)\\I_1=\dfrac{U_1}{R_1}=\dfrac{30}{30}=1\left(A\right)\\I_2=\dfrac{U_2}{R_2}=\dfrac{30}{60}=0,5\left(A\right)\end{matrix}\right.\)
Điện trở tương đương lúc này là:
\(R_{tđ}=R_{12}+R_3=20+40=60\left(\Omega\right)\)
Do mắc nối tiếp nên \(I=I_{12}=I_3=1,5\left(A\right)\)
Nhiệt năng đoạn mạch tiêu thụ trong 30ph:
\(A=P.t=I^2.R.t=1,5^2.60.30.60=243000\left(J\right)\)
Nhiệt lượng tỏa ra của R3 trong 30ph:
\(Q_{tỏa_3}=A_3=I_3^2.R_3.t=1,5^2.40.30.60=162000\left(J\right)\)
a) Vì R1//R2 nên: \(\frac{1}{R12}\)=\(\frac{1}{R1}\)+\(\frac{1}{R2}\)= 1/6+1/12= 1/4 => R12= 4(\(\Omega\))
Vì R3 nt R12 nên: Rtđ= R3 + R12 = 16 + 4 = 20 (\(\Omega\))
b) CĐDĐ qua mạch chính là: I= U/Rtđ= 30/20= 1,5(A)
TRong mạch song2 : \(\frac{I1}{I2}\)= \(\frac{R2}{R1}\)= \(\frac{12}{6}\)=2 \(\Leftrightarrow\) I1=2I2
Vì R3 nt R12 nên: I = I12=I3 = 1,5(A)
Mà: R12= R1+R2=> R12= 2R2 + R2 = 3R2
3R2 = 1,5A => R2= 0,5(A)
\(\Leftrightarrow\)R1= 2R2= 0,5 . 2= 1(A)
\(R_{12}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{6.4}{6+4}=2,4\left(\Omega\right)\)
Điện trở tương đương của mạch điện:
\(R_{tđ}=R_{12}+R_3=2,4+2=4,4\left(\Omega\right)\)
Do mắc nối tiếp nên \(I=I_{12}=I_3=\dfrac{U}{R_{tđ}}=\dfrac{11}{4,4}=2,5\left(A\right)\)
Do mắc song song nên:\(U_{12}=U_1=U_2=I_{12}.R_{12}=2,5.2,4=6\left(V\right)\)
\(\left\{{}\begin{matrix}I_1=\dfrac{U_1}{R_1}=\dfrac{6}{6}=1\left(A\right)\\I_2=\dfrac{U_2}{R_2}=\dfrac{6}{4}=1,5\left(A\right)\end{matrix}\right.\)
a) Điện trở tương đương của đoạn mạch AB:
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{60.40}{60+40}=24\left(\Omega\right)\)
b) Do mắc song song nên \(U=U_1=U_2=10V\)
Cường độ dòng điện qua mỗi điện trở:
\(\left\{{}\begin{matrix}I=\dfrac{U}{R_{tđ}}=\dfrac{10}{24}=\dfrac{5}{12}\left(A\right)\\I_1=\dfrac{U_1}{R_1}=\dfrac{10}{60}=\dfrac{1}{6}\left(A\right)\\I_2=\dfrac{U_2}{R_2}=\dfrac{10}{40}=\dfrac{1}{4}\left(A\right)\end{matrix}\right.\)