K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)

\(\Leftrightarrow\frac{m^2\left(x^2+4x+4-x^2+4x-4\right)}{8}-4x=\)\(m^2-2m+1+6m+3\)

\(\Leftrightarrow\frac{m^2.8x}{8}-4x=m^2+4m+4\)

\(\Leftrightarrow m^2x-4x=m^2+4m+4\)

\(\Leftrightarrow x\left(m^2-4\right)=\left(m+2\right)^2\) \(\left(1\right)\)

+) Nếu  \(m^2-4\ne0\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)

 Phương trình có nghiệm duy nhất  \(x=\frac{\left(m+2\right)^2}{m^2-4}=\frac{\left(m+2\right)^2}{\left(m+2\right)\left(m-2\right)}=\frac{m+2}{m-2}\)

+) Nếu  \(m=2\)

\(\left(1\right)\Leftrightarrow x\left(2^2-4\right)=\left(2+2\right)^2\)

         \(\Leftrightarrow0=16\) ( vô lí )

\(\Rightarrow\)Phương trình trên vô nghiệm

+) Nếu  \(m=-2\)

\(\left(1\right)\Leftrightarrow x\left[\left(-2\right)^2-4\right]=\left(-2+2\right)^2\)

\(\Leftrightarrow0=0\)( đúng )

\(\Rightarrow\)Phương trình có nghiệm đúng với mọi x 

Vậy : - Nếu  \(m\ne\pm2\)phương trình có nghiệm duy nhất  \(x=\frac{m+2}{m-2}\)

         - Nếu m = 2 thì phương trình vô nghiệm

         - Nếu m = -2 thì phương trình có nghiệm đúng với mọi x 

b: \(\Leftrightarrow m^2x-m^2+m-x\left(3m-2\right)=0\)

\(\Leftrightarrow x\left(m^2-3m+2\right)=m^2-m\)

Để phương trình vô nghiệm thì m-2=0

hay m=2

Để phương trình có vô số nghiệm thì m-1=0

hay m=1

Để phương trình có nghiệm duy nhất thì (m-2)(m-1)<>0

hay \(m\notin\left\{2;1\right\}\)

b: \(\Leftrightarrow x\left(m^2-m-2\right)=m^2-1\)

\(\Leftrightarrow x\left(m-2\right)\left(m+1\right)=m^2-1\)

Để phương trình có vô số nghiệm thì m+1=0

hay m=-1

Để phương trình vô nghiệm thì m-2=0

hay m=2

Để phương trình có nghiệm duy nhất thì (m-2)(m+1)<>0

hay \(m\notin\left\{2;-1\right\}\)

23 tháng 5 2016

ĐKXĐ : \(x\ne\frac{3}{2};-1;3\)

\(< =>\frac{x\left(2x+2\right)+x\left(2x-3\right)}{\left(2x-3\right)\left(2x+2\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)

\(< =>\frac{2x^2+2x+2x^2-3x}{\left(2x-3\right)2\left(x+1\right)}=\frac{2x.2\left(2x-3\right)}{\left(x+1\right)\left(x-3\right)2\left(2x-3\right)}\)

\(< =>\frac{\left(4x^2-x\right)\left(x-3\right)}{\left(2x-3\right)2\left(x+1\right)\left(x-3\right)}=\frac{8x^2-12x}{\left(2x-3\right)2\left(x+1\right)\left(x-3\right)}\)

\(=>4x^3-12x^2-x^2+3x=8x^2-12x\)

\(< =>4x^3-13x^2+3x-8x^2+12x=0\)

\(< =>4x^3-21x^2+15x=0\)

\(< =>x\left(4x^2-21x+15\right)=0\)

\(< =>x\left(4x^2-\frac{21}{4}.2.2x+\frac{441}{16}-\frac{201}{16}\right)=0\)

\(< =>x\left(\left(2x-\frac{21}{4}\right)^2-\sqrt{\frac{201}{16}}^2\right)=0\)

\(< =>x\left(2x-\frac{21}{4}-\frac{\sqrt{201}}{4}\right)\left(2x-\frac{21}{4}+\frac{\sqrt{201}}{4}\right)=0\)

\(< =>x\left(2x-\frac{21+\sqrt{201}}{4}\right)\left(2x-\frac{21-\sqrt{201}}{4}\right)=0\)

\(< =>\hept{\begin{cases}x=0\\2x-\frac{21+\sqrt{201}}{4}=0\\2x-\frac{21-\sqrt{201}}{4}=0\end{cases}< =>\hept{\begin{cases}x=0\\x=\frac{21+\sqrt{201}}{8}\\x=\frac{21-\sqrt{201}}{8}\end{cases}}}\)(thỏa mãn ĐKXĐ)

24 tháng 1 2017

d)

\(x\ne a,x\ne b\)

đặt \(\frac{x-a}{x-b}=t\Leftrightarrow t+\frac{1}{t}=2\Leftrightarrow\frac{t^2-2t+1}{t}=0\Rightarrow t=1\)

\(\frac{x-a}{x-b}=1\Leftrightarrow\frac{\left(x-a\right)-\left(x-b\right)}{x-b}=\frac{b-a}{x-b}=0\)

Vậy: \(a\ne b\) Pt vô nghiệm

a=b phương trinhg nghiệm với mọi x khác a, b

25 tháng 1 2017

cảm ơn bạn nha

8 tháng 2 2018

bài dễ mà :)

Pt ẩn x : \(\left(m^2-1\right)x=m+1\)   ( 1 )

\(\Leftrightarrow\)\(\left(m+1\right)\left(m-1\right)x=m+1\)

- Nếu \(m^2-1\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)

Pt ( 1 ) có nghiệm : \(x=\frac{m+1}{\left(m+1\right)\left(m-1\right)}=\frac{1}{m-1}\)

Nếu \(m+1=0\Leftrightarrow m=-1\)

Pt ( 1 ) có dạng 0x = 0 pt vô số nghiệm

Nếu \(m-1=0\Leftrightarrow m=1\)

Pt ( 1 ) có dạng 0x = 2 pt vô nghiệm

Vậy * \(m\ne\pm1\)pt ( 1 ) có nghiệm duy nhất \(x=\frac{1}{m-1}\)

       * \(m=-1\)pt ( 1 ) vô số nghiệm

      * \(m=1\)pt ( 1 ) vô nghiệm 

1 tháng 5 2018

\(\left(m^2-1\right)x=m+1\)              \(\left(1\right)\)

+) Nếu  \(m^2-1\ne0\Leftrightarrow m\ne\pm1\)

Phương trình có nghiệm duy nhất  \(x=\frac{m+1}{m^2-1}=\frac{1}{m-1}\)

+) Nếu  \(m=1\)

\(\left(1\right)\Leftrightarrow0x=2\) ( vô lí )

+) Nếu  \(m=-1\)

\(\left(1\right)\Leftrightarrow0x=0\) ( luôn đúng )

Vậy với  \(m\ne\pm1\) phương trình có 1 nghiệm duy nhất  \(x=\frac{1}{m-1}\)

       với m =1 thì phương trình vô nghiệm

       với m = -1 thì phương trình có nghiệm đúng với mọi x