Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{m}< >\dfrac{m}{2}\)
=>m^2<>2m-2
=>m^2-2m+2<>0(luôn đúng)
Để hệ có vô sô nghiệm thì \(\dfrac{m}{2}=\dfrac{m-1}{m}=\dfrac{m+1}{2}\)
=>2m=2m+2 và 2m-2=m^2+m
=>m^2+m-2m+2=0 và 0m=2(loại)
Để hệ vô nghiệm thì \(\dfrac{m}{2}=\dfrac{m-1}{m}< >\dfrac{m+1}{2}\)
=>m^2=2m-2 và 2m<>2m+2
=>0m<>2 và m^2-2m+2=0(loại)
b: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m+2}< >\dfrac{m-2}{m+1}\)
=>m^2+m<>m^2-4
=>m<>-4
Để hệ có vô số nghiệm thì \(\dfrac{m}{m+2}=\dfrac{m-2}{m+1}=\dfrac{5}{2}\)
=>m^2+m=m^2-4 và 2m=5m+10
=>m=-4 và m=-10/3(loại)
Để hệ vô nghiệm thì \(\dfrac{m}{m+2}=\dfrac{m-2}{m+1}< >\dfrac{5}{2}\)
=>m=-4 và m<>-10/3(nhận)
c: Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{m+2}< >-\dfrac{2}{1}=-2\)
=>-2m-4<>m-1
=>-3m<>3
=>m<>-1
Để hệ vô nghiệm thì \(\dfrac{m-1}{m+2}=\dfrac{2}{-1}< >\dfrac{3m-1}{1-m}\)
=>2m+4=-m+1 và 2-2m<>-3m+1
=>3m=-3 và m<>-1
=>m=-1 và m<>-1(loại)
Để hệ có vô số nghiệm thì \(\dfrac{m-1}{m+2}=\dfrac{2}{-1}< >\dfrac{3m-1}{1-m}\)
=>m=-1
mk lm câu khó nhất trong các câu này , rồi bn làm tương tự với các câu còn lại nha .
d) ta có : \(\left\{{}\begin{matrix}2x-y=3+2m\\mx+y=\left(m+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x-3-2m=m^2+2m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x=m^2+4m+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\\left(m+2\right)x=\left(m+2\right)^2\end{matrix}\right.\).....(1)
th1: \(m+2=0\Leftrightarrow m=-2\)
khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\0x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\in R\\y=2x+1\end{matrix}\right.\)
\(\Rightarrow\) phương trình có vô số nghiệm
th2: \(m+2\ne0\Leftrightarrow m\ne-2\)
khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\x=m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
\(\Rightarrow\) phương trình có nghiệm duy nhất \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
vậy khi +) \(m=-2\) phương trình có vô số nghiệm
+) khi \(m\ne-2\) phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
bạn à bạn k cho mình trước rồi mình sẽ trả lời cho.Hứa mình học CHUYÊN TOÁN mà,đừng lo nha.Hứa đó
a: \(\Leftrightarrow\left\{{}\begin{matrix}mx+\left(m+1\right)y=m+1\\my=2-2x\end{matrix}\right.\)
Nếu m=0 thì hệ sẽ là y=0+1=1 và 2-2x=0
=>y=1 và x=1
Nếu m<>0 thì \(\left\{{}\begin{matrix}y=\dfrac{-2x+2}{m}\\x\cdot m+\left(m+1\right)\cdot\dfrac{-2x+2}{m}=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot m+x\cdot\dfrac{-2\left(m+1\right)}{m}+\dfrac{2m+2}{m}=m+1\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot\left(m+\dfrac{-2m-2}{m}\right)=m+1-\dfrac{2m+2}{m}=\dfrac{m^2+m-2m-2}{m}=\dfrac{m^2-m-2}{m}\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot\dfrac{m^2-2m-2}{m}=\dfrac{m^2-m-2}{m}\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)
Nếu m^2-2m-2=0 thì hệ vô nghiệm
Nếu m^2-2m-2<>0 thì hệ sẽ có nghiệm duy nhất là:
\(\left\{{}\begin{matrix}x=\dfrac{m^2-m-2}{m^2-2m-2}\\y=-\dfrac{2}{m}\cdot\dfrac{m^2-m-2}{m^2-2m-2}+\dfrac{2}{m}=\dfrac{-2m^2+2m+4+2m^2-4m-4}{m\left(m^2-2m-2\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2-m-2}{m^2-2m-2}\\y=-\dfrac{2}{m^2-2m-2}\end{matrix}\right.\)
c: =>(m-1)x+2y=3m-1 và (2m+2)x-2y=2-2m
=>(3m+1)x=m+1 và y=(m+2)x+m-1
Nếu m=-1/3 thì hệ vô nghiệm
Nếu m<>-1/3 thì hệ sẽ có nghiệm duy nhất là:
\(\left\{{}\begin{matrix}x=\dfrac{m+1}{3m+1}\\y=\dfrac{m^2+3m+2}{3m+1}+m-1=\dfrac{m^2+3m+2+3m^2-3m+m-1}{3m+1}=\dfrac{4m^2+m+1}{3m+1}\end{matrix}\right.\)