K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10cm

Xét ΔBAC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\)

\(\Leftrightarrow\widehat{C}\simeq37^0\)

\(\Leftrightarrow\widehat{B}=53^0\)

a: góc B=90-30=60 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>AB/16=1/2

=>AB=8cm

\(AC=8\sqrt{3}\left(cm\right)\)

b: góc C=90-40=50 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>BC=5:sin50=6,53(cm)

=>AC=4,2(cm)

d: góc C=90-60=30 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>AB/20=1/2

hay AB=10(cm)

=>\(AC=10\sqrt{3}\left(cm\right)\)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

22 tháng 8 2023

a) \(AH^2=HB.HC=50.8=400\)

\(\Rightarrow AH=20\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.20\left(50+8\right)=\dfrac{1}{2}.20.58\left(cm^2\right)\)

mà \(S_{ABC}=\dfrac{1}{2}AB.AC\)

\(\Rightarrow AB.AC=20.58=1160\)

Theo Pitago cho tam giác vuông ABC :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2-2AB.AC=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2=BC^2+2AB.AC\)

\(\Rightarrow\left(AB+AC\right)^2=58^2+2.1160=5684\)

\(\Rightarrow AB+AC=\sqrt[]{5684}=2\sqrt[]{1421}\left(cm\right)\)

Chu vi Δ ABC :

\(AB+AC+BC=2\sqrt[]{1421}+58=2\left(\sqrt[]{1421}+29\right)\left(cm\right)\)

24 tháng 3 2019

a, Sử dụng tỉ số cosC và sinC, tính được

a =  20 3 3 cm, c =   10 3 3 cm và  B ^ = 60 0

b, Sử dụng tỉ số sinB và cosB, tính được:

b = 20.sin 35 0 ≈ 11,47cm, c = 20.cos 35 0 ≈ 16,38cm

c, Sử dụng định lý Pytago và tỉ số sinB, tính được:

c =  5 5 cm, sinB =  10 15 =>  B ^ ≈ 41 , 8 0 ,  C ^ ≈ 48 , 2 0

d, Tương tự c) ta có

a =  193 cm, tanB =  12 7 =>  B ^ ≈ 59 , 7 0 ,  C ^ = 30 , 3 0

14 tháng 12 2023

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=5^2+12^2=169\)

=>\(BC=\sqrt{169}=13\left(cm\right)\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{5}{13}\)

nên \(\widehat{B}\simeq23^0\)

Ta có: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}\simeq90^0-23^0=67^0\)

b: Ta có: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}=90^0-40^0=50^0\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)

=>\(BC=\dfrac{AC}{sinB}=\dfrac{5}{sin40}\simeq7,78\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB^2=BC^2-AC^2\)

=>\(AB\simeq\sqrt{7,78^2-5^2}\simeq5,96\left(cm\right)\)