K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2017

\(cos^2\left(x+\frac{\pi}{6}\right)\) hả

21 tháng 5 2017

uk đúng rồi ...mk viết nhầm ..phải là cos^2 nha

NV
20 tháng 8 2020

ĐKXĐ: ...

\(\left\{{}\begin{matrix}x+\frac{1}{x}+y+\frac{1}{y}=5\\x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{x}+y+\frac{1}{y}=5\\\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=13\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+\frac{1}{x}=u\\y+\frac{1}{y}=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u+v=5\\u^2+v^2=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u+v=5\\\left(u+v\right)^2-2uv=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u+v=5\\uv=6\end{matrix}\right.\)

Theo Viet đảo, u và v là nghiệm của: \(t^2-5t+6=0\Rightarrow\left[{}\begin{matrix}t=2\\t=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+\frac{1}{x}=2\\y+\frac{1}{y}=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+\frac{1}{x}=3\\y+\frac{1}{y}=2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow...\)

1 tháng 8 2017

b)  \(\frac{2\left(x+1\right)}{3x^2+x}+\frac{13\left(x+1\right)}{3x^2+x+6\left(x+1\right)}=6\)  (1)

Đặt  \(a=x+1;b=3x^2+x\)  thì

\(\left(1\right)\Leftrightarrow\frac{2a}{b}+\frac{13a}{b+6a}=6\)

\(\Leftrightarrow4a^2-7ab-2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(4a+b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=2b\\a=-\frac{1}{4}b\end{cases}}\)

Đến đây thì dễ rồi

22 tháng 5 2017

x.l nha mik ms hkl p 7 àk

22 tháng 5 2017

Google có nha bn

Đặt \(x+\frac{1}{x}=a\)\(y+\frac{1}{y}=b\)

ta cm được\(a+b=\left(x+y\right)\left(1+\frac{1}{xy}\right)\) 

\(a^2+b^2+4=\left(x^2+y^2\right)\left(1+\frac{1}{x^2y^2}\right)\)

vậy hệ pt trở thành\(\hept{\begin{cases}a+b=5\\a^2+b^2+4=9\end{cases}}\)

từ đó tìm đc a và b rồi x và y

nhầm chút !!!!phải là\(a^2+b^2-4\)mới đúng!