Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(2018=a\)
\(\Rightarrow\sqrt{a-1+\sqrt{x-1}}=a-x\)
\(\Leftrightarrow a-1+\sqrt{x-1}=\left(a-x\right)^2\)
\(\Leftrightarrow\sqrt{x-1}=x^2-2ax+a^2-a+1\)
\(\Leftrightarrow x-1=\left(x^2-2ax+a^2-a+1\right)^2\)
\(\Leftrightarrow\left[\left(x-a\right)^2-x+1\right]\left[\left(x-a\right)^2+x-2a+2\right]=0\)
+)Nếu x < 2017 => x - 2018 = -1 => \(\left|x-2018\right|\)> 1
=> \(\left|x-2018\right|^{2018}\) >1
=> x < 2017 ko thỏa mãn
+) Nếu x = 2017 => x - 2018 = -1 => \(\left|x-2018\right|\) = 1
=> \(\left|x-2018\right|^{2018}=1\)
=> | x − 2017 | 2017 + | x − 2018 | 2018 = 1
=> x = 2017(TM)
+) Nếu 2017< x < 2018
=> 0 < x - 2017 < 1 và 2018 - x < 1
=>| x − 2017 | 2017 + | x − 2018 | 2018 < | x − 2017 |
+) |2018- x| ≤ | x-2017+2018-x| = 1
=> | x − 2017 | 2017 + | x − 2018 | 2018 < 1
=> 2017 < x < 2019 ko thỏa mãn
+) Nếu x = 2018 => x - 2017 = 1 và x - 2018 = 0
=>| x − 2017 | 2017 + | x − 2018 | 2018 = 1
=> x = 2018 thỏa mãn
+) Nếu x > 2018 => x - 2017 > 1
=> | x − 2017 | 2017 > 1
=>| x − 2017 | 2017 + | x − 2018 | 2018 > 1
=> x > 2018 ko thỏa mãn
Vậy x = 2018 là nghiệm của pt
x = 2017 là nghiệm của pt
Dễ thấy \(x=2017\)không là nghiệm của phương trình.
Ta có:
\(\frac{1+\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)^2}{1-\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)}=\frac{13}{37}\)
Đặt \(\frac{x-2018}{2017-x}=a\)
\(\Rightarrow\frac{1+a+a^2}{1-a+a^2}=\frac{13}{37}\)
\(\Leftrightarrow24a^2+50a+24=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\\a=-\frac{4}{3}\end{cases}}\)
Áp dụng BĐT Cauchy–Schwarz ta được:
\(x=\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2018}+\sqrt{2017}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2018}+\sqrt{2017}=y\)
Dấu \("="\Leftrightarrow\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vô.lí\right)\)
Vậy đẳng thức ko xảy ra hay \(x>y\)
từ a+b=3 => b=3-a
mặt khác: \(a^3-b^2=-3\)
=>\(a^3-\left(3-a\right)^2+3=0\)
\(\Rightarrow a^3-9+6a-a^2+3=0\)
\(\Rightarrow a^3-a^2+6a-6=0\)
\(\Rightarrow a^2\left(a-1\right)+6\left(a-1\right)=0\)
\(\Rightarrow\left(a^2+6\right)\left(a-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}a^2+6=0\\a-1=0\end{cases}\Rightarrow\hept{\begin{cases}a^2=-6\\a=1\end{cases}}}\)
=>a=1 vì \(a^2\ge0\)
=>\(\sqrt[3]{x-2}=1\)
\(\Rightarrow x-2=1\Rightarrow x=3\)
Vậy x=3
b) ta có: Đặt :\(\sqrt[3]{x-2}=a;\) Đk: \(x\ge-1\)
\(\sqrt{x+1}=b;b\ge0\)
ta có:\(\hept{\begin{cases}a+b=3\\a^3-b^2=-3\end{cases}}\)
đến đây dùng pp thế là đc rồi nhé!