Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chú ý:
\(\left(x^2+2x\right)^2+4\left(x+1\right)^2=\left(x^2+2x\right)^2+4\left(x^2+2x+1\right)=\left(x^2+2x\right)^2+4\left(x^2+2x\right)+4\)
\(=\left(x^2+2x+2\right)^2\)
\(x^2+\left(x+1\right)^2+\left(x^2+x\right)^2\)
\(=\left(x^2+x\right)+x^2+x^2+2x+1\)
\(=\left(x^2+x\right)^2+2x^2+2x+1\)
\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)
\(=\left(x^2+x+1\right)^2\)
\(\left(\sqrt{2x+3}+2\right)\left(\sqrt{x+6}-\sqrt{x+1}\right)=5\)
\(ĐKXĐ:x\ge-1\).Nhận thấy \(\sqrt{x+6}-\sqrt{x+1}>0\)
\(\Leftrightarrow\left(\sqrt{2x+3}+2\right)\frac{\left(\sqrt{x+6}+\sqrt{x+1}\right)\left(\sqrt{x+6}-\sqrt{x+1}\right)}{\sqrt{x+6}-\sqrt{x+1}}=5\)
\(\Leftrightarrow\left(\sqrt{2x+3}+2\right)\frac{5}{\sqrt{x+6}-\sqrt{x+1}}=5\)
\(\Leftrightarrow\frac{\sqrt{2x+3}+2}{\sqrt{x+6}-\sqrt{x+1}}=1\)
\(\Leftrightarrow\sqrt{2x+3}+2-\sqrt{x+6}+\sqrt{x+1}=0\)
Th1:\(\sqrt{x+1}=2\Leftrightarrow x=3\left(thoaman\right)\)
Th2:\(\sqrt{x+1}-2\ne0\Leftrightarrow x\ne3\)
\(\Leftrightarrow\left(\sqrt{2x+3}-\sqrt{x+6}\right)+\left(2+\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{2x+3}+\sqrt{x+6}}+\frac{x-3}{\sqrt{x+1}-2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{2x+3}+\sqrt{x+6}}+\frac{1}{\sqrt{x+1}-2}\right)=0\)
Tự lm tiếp nha
ĐKXĐ : \(\hept{\begin{cases}x+4\ge0\\4-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-4\\x\le4\end{cases}\Leftrightarrow}-4\le x\le4}\)
Ta có :\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=2x\)
\(\Leftrightarrow\frac{\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)}{\sqrt{x+4}+2}.\frac{\left(\sqrt{4-x}+2\right)\left(\sqrt{4-x}-2\right)}{\sqrt{4-x}-2}=2x\)
\(\Leftrightarrow\frac{x+4-4}{\sqrt{x+4}+2}.\frac{4-x-4}{\sqrt{4-x}-2}=2x\)
\(\Leftrightarrow\frac{x.\left(-x\right)}{\left(\sqrt{x+4}+2\right)\left(\sqrt{4-x}-2\right)}-2x=0\)
\(\Leftrightarrow x\left[\frac{-x}{\left(\sqrt{x+4}+2\right)\left(\sqrt{4-x}-2\right)}-2\right]=0\)
\(\Leftrightarrow x\left[\frac{x}{\left(\sqrt{x+4}+2\right)\left(\sqrt{4-x}-2\right)}+2\right]=0\)
Tự làm nốt
\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\left(-4\le x\le4\right)\)
Dễ thấy x=0 là nghiệm của phương trình (1)
Xét x\(\ne\)0.Nhân cả 2 vế của (1) với \(\left(\sqrt{4+x}+2\right)\) được
\(x\left(\sqrt{4-x}+2\right)=-2x\left(\sqrt{4+x}+2\right)\)
\(\Rightarrow\sqrt{4-x}+2=-2\left(\sqrt{4+x}+2\right)\)
\(\Rightarrow\sqrt{4-x}=-2\sqrt{4+x}-6\)
\(\Rightarrow\sqrt{4-x}< 0\)(vô nghiệm)
Vậy nghiệm của phương trình (1) là x=0
-Chúc bạn học tốt-
Bài giải:
Điều kiện:\(\left\{{}\begin{matrix}x+4\ge0\\4-x\ge0\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x\ge-4\\x\le4\end{matrix}\right.\)⇔\(-4\le x\le4\)
Pt: \(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\)
⇔\(\dfrac{x+4-4}{\sqrt{x+4}+2}\left(\sqrt{4-x}+2\right)=-2x\)
⇔\(\dfrac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}+2x=0\)
⇔\(x\left(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}+2\right)=0\)
⇔\(x=0\left(tm\right)\)
Vì \(\sqrt{4-x}+2>0\) và \(\sqrt{x+4}+2>0\) với mọi x
Nên \(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}>0\) ⇒ \(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}+2>0\)
Vậy pt có nghiệm duy nhất là \(x=0\)