Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}6x-1=a\\\sqrt{x^2+2}=b>0\end{matrix}\right.\) \(\Rightarrow3x=\frac{1}{2}\left(a+1\right)\)
\(\Rightarrow ab=2b^2-\frac{1}{2}a-\frac{1}{2}\)
\(\Leftrightarrow4b^2-2ab-a-1=0\)
\(\Leftrightarrow\left(2b-1\right)\left(2b+1\right)-a\left(2b+1\right)=0\)
\(\Leftrightarrow\left(2b+1\right)\left(2b-a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=-\frac{1}{2}< 0\left(l\right)\\2b=a+1\end{matrix}\right.\) \(\Leftrightarrow2\sqrt{x^2+2}=6x\) (\(x\ge0\))
\(\Leftrightarrow x^2+2=9x^2\)
\(\Rightarrow x^2=\frac{1}{4}\Rightarrow x=\frac{1}{2}\)
a) \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\)\(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(-x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
Vậy...
đk: \(-x^4+3x-1\ge0\)
Có \(-\left(x^4+1\right)\le-2x^2\)
\(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\)
Áp dụng bunhia có: \(\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\le\sqrt{\left(1+1\right)\left(3x-2x^{^2}+2x^2-3x+2\right)}=2\)
\(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le2\) (*)
Có: \(x^4-x^2-2x+4=\left(x^4+1\right)-x^2-2x+3\ge2x^2-x^2-2x+3=\left(x-1\right)^2+2\ge2\) (2*)
Từ (*) (2*) dấu = xảy ra khi x=1 (TM)
Vậy x=1
b2
\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)
Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)
Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)
và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)
Do đó \(VT\ge VF\)
Dấu = xảy ra khi\(x=\frac{1}{2}\)
\(PT\Leftrightarrow\left(x^2+4\right)\sqrt{2x+4}+\left(x^2+4\right)=4x^2+6x\\ \Leftrightarrow\dfrac{\left(x^2+4\right)\left(2x+3\right)}{\sqrt{2x+4}-1}-2x\left(2x+3\right)=0\\ \Leftrightarrow\left(2x+3\right)\left(\dfrac{x^2+4}{\sqrt{2x+4}-1}-2x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\\dfrac{x^2+4}{\sqrt{2x+4}-1}=2x\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x\sqrt{2x+4}-2x=x^2+4\\ \Leftrightarrow2x\sqrt{2x+4}=x^2+2x+4\\ \Leftrightarrow8x^3+16x^2=x^4+4x^3+12x^2+16x+16\\ \Leftrightarrow x^4-4x^3-4x^2+16x+16=0\\ \Leftrightarrow\left(x^2-2x-4\right)^2=0\\ \Leftrightarrow x^2-2x-4=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{matrix}\right.\)
Thử lại ta thấy \(x=-\dfrac{3}{2}\text{ không thỏa mãn; }x=1-\sqrt{5}\text{ không thỏa mãn}\)
Vậy PT có nghiệm \(x=1+\sqrt{5}\)
okeee mik camon bn nhieu