K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2020

Huyền Subi x2 + 2x - 15 - (x2 - 1) + 8 = 2x - 6 chứ, sao lại là 2x + 6 được, bạn xem lại xem!

25 tháng 4 2020

Lộn rồi hehe, chết thật

26 tháng 1 2018

c, Trừ hai vế cho 6 

Vế trái thì lấy từng số hạng trừ 1 là được

8 tháng 2 2018

thế tức là phải như nào hả bạn

10 tháng 5 2020
https://i.imgur.com/WCGo7EZ.jpg
9 tháng 5 2020

a,\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)

ĐKXĐ: x≠1/4, x≠-1/4

\(-\frac{3}{4x-1}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)

\(\frac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\frac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\frac{3+6x}{16x^2-1}\)

⇒-12x-3=8x-2-3-6x

⇔8x-6x+12x=-3+2+3

⇔14x=2

⇔x=1/7(tmđk)

Vậy phương trình có nghiệm là x=1/7

b, \(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\) (2)

ĐKXĐ: x≠0, x≠2

(2)⇔\(\frac{2\left(5-x\right)}{2.4x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4.\left(x-1\right)}{4.2x\left(x-2\right)}+\frac{x}{8.x\left(x-2\right)}\)

⇒10-2x+7x-14=4x-4+x

⇔-2x+7x-4x-x=-4-10+14

⇔0x=0

⇔ x∈R

Vậy phương trình có nghiệm là x∈R và x≠0, x≠2

c, \(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\) (3)

ĐKXĐ: x≠0

(3)⇒x(x+1)(x2-x+1)-x(x-1)(x2+x+1)=3

⇔x4+x-x4+x=3

⇔2x=3

⇔x=3/2(tmđk)

Vậy phương trình có nghiệm là x=3/2

30 tháng 4 2019

ttiiok

30 tháng 4 2019

a,\(2x\left(x-3\right)=x-3.\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy ..... 

b, \(\frac{x+2}{x-2}-\frac{5}{x}=\frac{8}{x^2-2x}\)

\(\Leftrightarrow\frac{\left(x+2\right)\cdot x}{\left(x-2\right)\cdot x}-\frac{5\left(x-2\right)}{x\left(x-2\right)}=\frac{8}{x^2-2x}\)

\(\Leftrightarrow\frac{x^2+2x-\left(5x-10\right)}{\left(x-2\right)x}=\frac{8}{x^2-2x}\)

\(\Leftrightarrow\frac{x^2+2x-5x+10}{x^2-2x}=\frac{8}{x^2-2x}\)

\(\Leftrightarrow x^2+2x-5x+10=8\)

\(\Leftrightarrow x^2-3x+10-8=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)

Vậy ....

26 tháng 9 2019

\(\frac{5}{x^2+x-6}-\frac{2}{x^2+4x+3}=-\frac{3}{2x-1}\)

<=> \(\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=-\frac{3}{2x-1}\)

<=> 5(x + 1)(2x - 1) - 2(x - 2)(2x - 1) = -3(x - 2)(x + 3)(x + 1)

<=> 6x2 + 15x - 9 = -3x3 - 6x2 + 15x + 18

<=> 6x2 - 9 = -3x3 - 6x2 + 18

<=> 6x2 - 9 + 3x3 + 6x2 - 18 = 0

<=> 12x2 - 27 + 3x3 = 0

<=> 3(4x2 - 9 + x3) = 0

<=> 3(x2 + x - 3)(x + 3) = 0

<=> \(\orbr{\begin{cases}x=-3\\x=\frac{-1\pm\sqrt{13}}{2}\end{cases}}\)

26 tháng 9 2019

DKXD \(x\ne\frac{1}{2};2;-1;3,;-3\)  

<=> \(\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)

<=> \(\frac{1}{x+3}\left(\frac{5}{x-2}-\frac{2}{x+1}\right)=\frac{-3}{2x-1}\)

<=> \(\frac{1}{x+3}\left(\frac{5x+5-2x+4}{\left(x-2\right)\left(x+1\right)}\right)=\frac{-3}{2x-1}\)

<=> \(\frac{1}{x+3}\left(\frac{3\left(x+3\right)}{\left(x-2\right)\left(x+1\right)}\right)=\frac{3}{1-2x}\)

<=> \(\frac{3}{\left(x-2\right)\left(x+1\right)}=\frac{3}{1-2x}\)

<=> \(x^2-x-2=1-2x\)

<=> \(x^2+x-3=0\)

<=> \(\orbr{\begin{cases}x=\frac{-1+\sqrt{13}}{2}\\x=\frac{-1-\sqrt{13}}{2}\end{cases}}\)

chuc ban hoc tot 

14 tháng 3 2018

\(\frac{x+3}{x-4}-\frac{1}{x}=-\frac{5}{4x-x^2}\) (Điều kiện \(x\ne0\)và \(x\ne4\)

<=> \(\frac{x\left(x+3\right)-\left(x-4\right)}{x\left(x-4\right)}=\frac{5}{x\left(x-4\right)}\)

<=> x2 + 3x -x+4=5

<=> x2 + 2x -1=0

<=> (x+1)2-2=0

<=> \(\left(x+1-\sqrt{2}\right)\left(x+1+\sqrt{2}\right)=0\)

=> \(\hept{\begin{cases}x_1=-1+\sqrt{2}\\x_2=-1-\sqrt{2}\end{cases}}\)

20 tháng 6 2020

Cách khác ạ =)

\(\frac{x+3}{x-4}-\frac{1}{x}=\frac{-5}{4x-x^2}\left(đkxđ:x\ne0;4\right)\)

\(< =>\frac{\left(x+3\right).x}{\left(x-4\right).x}-\frac{1\left(x-4\right)}{\left(x-4\right).x}=\frac{5}{x\left(x-4\right)}\)

\(< =>\left(x+3\right).x-\left(x-4\right)=5\)

\(< =>x^2+3x-x+4=5\)

\(< =>x^2+2x-1=0\)

Ta có : \(\Delta=2^2-4\left(-1\right)=0\)

Vì delta = 0 nên phương trình sẽ có nghiệm kép 

\(x_1=x_2=-\frac{b}{2a}=-\frac{2}{2}=-1\)

Vậy nghiệm của phương trình là -1

Đúng không nhỉ ?

15 tháng 4 2019

a, 3-4x(25-2x)=8x^2+x-30

<=> 3-100x+8x^2=8x^2+x-30

<=>3-100x+8x^2-8x^2-x+30=0

<=>-101x+33=0

<=>-101x=-33

<=>x=\(\dfrac{33}{101}\)

Vậy S={\(\dfrac{33}{101}\) }

b,(2x+1)(3x-2)=(5x-8)(2x+1)

<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0

<=>(2x+1)[(3x-2)-(5x-8)]=0

<=>(2x+1)(3x-2-5x+8)=0

<=>(2x+1)(-2x+6)=0

=> 2x+1=0 hoặc -2x+6=0

+) 2x+1=0

<=>2x=-1

<=>x=-1/2

+)-2x+6=0

<=>-2x=-6

<=>x=3

vậy S={-1/2;3}

c,d, do mình lười quá nên mình ghi luôn kết quả nhé : c, x= \(\dfrac{1}{2}\)

d, x=5

16 tháng 4 2019

Thanks, nếu mà bạn có thời gian nội trong tuần nay thì bạn chỉ cách làm câu (d) đc ko ạ. Do tuần sau mình thi rồi nên cần, pls