Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
ĐK \(\hept{\begin{cases}x\ge1\\\frac{-1-\sqrt{3}}{2}\le x\le\frac{-1+\sqrt{3}}{2}\end{cases}}\)
\(PT\Leftrightarrow2x^3-x^2-3x-1+\sqrt{2x^3-3x+1}-\sqrt[3]{x^2+2}=0\)
Đặt \(\sqrt{2x^3-3x+1}=a,\sqrt[3]{x^2+2}=b\left(a,b\ge0\right)\)
\(PT\Leftrightarrow a^2-b^3+a-b=0\)
\(\Rightarrow a=b=1\)
Tính ra
1 ĐKXD \(x\ge1\)
.\(2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)
Đặt \(\sqrt{x-1}=a;\sqrt{x^2+x+1}=b\left(a,b\ge0\right)\)
=> \(2b^2+3a^2=2x^2+5x-1\)
=> \(2b^2+3a^2-7ab=0\)
<=> \(\orbr{\begin{cases}a=2b\\a=\frac{1}{3}b\end{cases}}\)
+ \(a=2b\)
=> \(2\sqrt{x^2+x+1}=\sqrt{x-1}\)
=> \(4x^2+3x+5=0\)vô nghiệm
+ \(a=\frac{1}{3}b\)
=> \(\sqrt{x^2+x+1}=3\sqrt{x-1}\)
=> \(x^2-8x+10=0\)
<=> \(\orbr{\begin{cases}x=4+\sqrt{6}\left(tmĐK\right)\\x=4-\sqrt{6}\left(kotmĐK\right)\end{cases}}\)
Vậy \(x=4+\sqrt{6}\)
ĐKXĐ:\(2x^2-1\ge0;x^2-3x-2\ge0;2x^2+2x+3\ge0;x^2-x+2\ge0\)
\(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)
<=> \(\left(\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}\right)+\left(\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}\right)=0\)
\(\Leftrightarrow\frac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)
<=> \(\left(2x+4\right)\left(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}\right)=0\)(1)
Vì \(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}>0\)
nên pt(1) <=> \(2x+4=0\Leftrightarrow x=-2\)(tmđk)
Vậy x=-2
Em kiểm tra lại đề bài câu trên nhé
Điều kiện xác định phương trình \(x\ge0,2x^2+3x-3\ge0.\)
Ta dùng phép nhân liên hợp phương trình viết lại dưới dạng
\(\sqrt{3x^2-2x+1}+x-2=\sqrt{2x^2+3x-3}-\sqrt{x}\) (1)
\(\Leftrightarrow\frac{2x^2+2x-3}{\sqrt{3x^2-2x+1}-x+2}=\frac{2x^2+2x-3}{\sqrt{2x^2+3x-3}+\sqrt{x}}\)
Trường hợp 1. \(2x^2+2x-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{7}}{2}\) (thỏa mãn).
Trường hợp 2. \(\sqrt{3x^2-2x+1}-x+2=\sqrt{2x^2+3x-3}+\sqrt{x}\) (2)
Lấy (1)+(2) cho ta \(3x^2-2x+1=2x^2+3x-3\Leftrightarrow x^2-5x+4=0\Leftrightarrow x=1,4.\) Tuy nhiên x=4 không thỏa mãn.
Vậy phương trình có ba nghiệm \(x=1,\frac{-1\pm\sqrt{7}}{2}\)
ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{2x-3}{\sqrt{3x-2}+\sqrt{x+1}}=\left(2x-3\right)\left(x+1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\\dfrac{1}{\sqrt{3x-2}+\sqrt{x+1}}=x+1\left(1\right)\end{matrix}\right.\)
Do \(x\ge\dfrac{2}{3}\Rightarrow\left\{{}\begin{matrix}VT< 1\\VP>1\end{matrix}\right.\) \(\Rightarrow\left(1\right)\) vô nghiệm
Vậy pt có nghiệm duy nhất \(x=\dfrac{3}{2}\)