\(\frac{\left(2018-x\right)^2+\left(2018-x\right)\left(x-2019\right)+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 2 2020

Đặt \(\left\{{}\begin{matrix}2018-x=a\\x-2019=b\end{matrix}\right.\) \(\Rightarrow a+b=-1\Rightarrow b=-1-a\)

\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)

\(\Leftrightarrow15a^2+34ab+15b^2=0\)

\(\Leftrightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}5a=-3b\\3a=-5b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5a=-3\left(-1-a\right)\\3a=-5\left(-1-a\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2a=3\\2a=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2018-x=\frac{3}{2}\\2018-x=-\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{4033}{2}\\x=\frac{4041}{2}\end{matrix}\right.\)

NV
13 tháng 4 2019

a/

Nhận thấy ngay phương trình có 2 nghiệm \(\left[{}\begin{matrix}x=2019\\x=2018\end{matrix}\right.\)

- Với \(x>2019\Rightarrow\left\{{}\begin{matrix}x-2018>1\\x-2019>0\end{matrix}\right.\) \(\Rightarrow\left|x-2018\right|^{2019}+\left|x-2019\right|^{2018}>1\Rightarrow\) pt vô nghiệm

- Với \(x< 2018\Rightarrow\left\{{}\begin{matrix}x-2018< 0\\x-2019< -1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x-2018\right|>0\\\left|x-2019\right|>1\end{matrix}\right.\)

\(\Rightarrow\left|x-2018\right|^{2019}+\left|x-2019\right|^{2018}>1\Rightarrow\) pt vô nghiệm

- Với \(2018< x< 2019\) viết lại pt:

\(\left|x-2018\right|^{2019}+\left|2019-x\right|^{2018}=1\)

Ta có: \(\left\{{}\begin{matrix}0< x-2018< 1\\0< 2019-x< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x-2018\right|^{2019}< x-2018\\\left|2019-x\right|^{2018}< 2019-x\end{matrix}\right.\)

\(\Rightarrow\left|x-2018\right|^{2019}+\left|2019-x\right|^{2018}< x-2018+2019-x=1\)

\(\Rightarrow\) pt vô nghiệm

Vậy pt có đúng 2 nghiệm: \(\left[{}\begin{matrix}x=2018\\x=2019\end{matrix}\right.\)

NV
13 tháng 4 2019

b/

Thay \(x=0\) vào pt thấy không phải là nghiệm, chia cả tử và mẫu của các hạng tử vế trái cho x:

\(\frac{2}{x+\frac{1}{x}-1}-\frac{1}{x+\frac{1}{x}+1}=\frac{5}{3}\)

Đặt \(x+\frac{1}{x}=a\) phương trình trở thành:

\(\frac{2}{a-1}-\frac{1}{a+1}=\frac{5}{3}\)

\(\Leftrightarrow2\left(a+1\right)-\left(a-1\right)=\frac{5}{3}\left(a^2-1\right)\)

\(\Leftrightarrow5a^2-3a-14=0\) \(\Rightarrow\left[{}\begin{matrix}a=2\\a=-\frac{7}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=2\\x+\frac{1}{x}=-\frac{7}{5}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-2x+1=0\\5x^2+7x+5=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=1\)

Ta có: \(f\left(2019\right)=2020=2019+1\)          \(f\left(2020\right)=2021=2020+1\)Đặt \(h\left(x\right)=-x-1\)và \(g\left(x\right)=f\left(x\right)+h\left(x\right)\)\(\Rightarrow\hept{\begin{cases}g\left(2019\right)=f\left(2019\right)+h\left(2019\right)=2020-2020=0\\g\left(2020\right)=f\left(2020\right)+h\left(2020\right)=2021-2021=0\end{cases}}\)\(\Rightarrow x=2019;x=2020\)là nghiệm của đa thức g(x) mà g(x) là đa thức bậc 3 , hệ số \(x^3\)là...
Đọc tiếp

Ta có: \(f\left(2019\right)=2020=2019+1\)

          \(f\left(2020\right)=2021=2020+1\)

Đặt \(h\left(x\right)=-x-1\)và \(g\left(x\right)=f\left(x\right)+h\left(x\right)\)

\(\Rightarrow\hept{\begin{cases}g\left(2019\right)=f\left(2019\right)+h\left(2019\right)=2020-2020=0\\g\left(2020\right)=f\left(2020\right)+h\left(2020\right)=2021-2021=0\end{cases}}\)

\(\Rightarrow x=2019;x=2020\)là nghiệm của đa thức g(x) mà g(x) là đa thức bậc 3 , hệ số \(x^3\)là số nguyên

\(\Rightarrow g\left(x\right)=a\left(x-2019\right)\left(x-2020\right)\left(x-x_0\right)\)(\(a\in\)Z*)

\(\Rightarrow f\left(x\right)=g\left(x\right)-h\left(x\right)\)

               \(=a\left(x-2019\right)\left(x-2020\right)\left(x-x_0\right)+x+1\)

\(f\left(2021\right)=a\left(2021-2019\right)\left(2021-2020\right)\left(2021-x_0\right)+2021+1\)

                    \(=a.1.2\left(2021-x_0\right)+2022\)

\(f\left(2018\right)=a\left(2018-2019\right)\left(2018-2020\right)\left(2018-x_0\right)+2018+1\)

                      \(=a.1.2.\left(2018-x_0\right)+2019\)

\(\Rightarrow f\left(2021\right)-f\left(2018\right)=a.1.2\left(2021-2018\right)+3\)

                                                     \(=6a+3\)

Làm nốt

 

3
31 tháng 10 2019

Cho đa thức \(f\left(x\right)\)bậc 3 với hệ số \(x^3\)là số nguyên dương thỏa mãn:

\(f\left(2019\right)=2020;f\left(2020\right)=2021\)

CMR \(f\left(2021\right)-f\left(2018\right)\)là hợp số

31 tháng 10 2019

Cho xin cái đề ạ

18 tháng 2 2018

À khác cái dấu nhưng đề phải là giải phương trình chứ
Đặt 2017-x=a => x-2018=-a-1 phương trình trở thành:
\(\frac{a^2+a\left(-a-1\right)+\left(a-1\right)^2}{a^2-a\left(-a-1\right)+\left(a-1\right)^2}=\frac{19}{49}\)
\(\Leftrightarrow\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+a+1\right)=19\left(3a^2+3a+1\right)\)

\(\Leftrightarrow49a^2+49a+49=57a^2+57a+19\)

\(\Leftrightarrow8a^2+8a-30=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=\frac{3}{2}\\a=-\frac{5}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=2015,5\\x=2019,5\end{cases}}}\)
Vậy......................

17 tháng 2 2018

Tử và mẫu giống nhau mà

17 tháng 2 2020

Ta có : \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow x=y=z\)

Khi đó : \(3x^{2018}=27^{673}=\left(3^3\right)^{673}=3^{2019}\)

\(\Leftrightarrow x^{2018}=3^{2018}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=z=3\\x=y=z=-3\end{cases}}\)

Đến đây tự tính A nha!