Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a. ĐKXĐ: $x\geq \frac{2}{5}$
PT $\Leftrightarrow 5x-2=7^2=49$
$\Leftrightarrow 5x=51$
$\Leftrightarrow x=\frac{51}{5}=10,2$
b. ĐKXĐ: $x\geq 3$
PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{25(x-3)}=24$
$\Leftrightarrow 3\sqrt{x-3}+5\sqrt{x-3}=24$
$\Leftrightarrow 8\sqrt{x-3}=24$
$\Leftrightarrow \sqrt{x-3}=3$
$\Leftrightarrow x-3=9$
$\Leftrightarrow x=12$ (tm)
Bài 1:
c. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow x^2-5x+6-2(\sqrt{x-2}-1)=0$
$\Leftrightarrow (x-2)(x-3)-2.\frac{x-3}{\sqrt{x-2}+1}=0$
$\Leftrightarrow (x-3)[(x-2)-\frac{2}{\sqrt{x-2}+1}]=0$
$x-3=0$ hoặc $x-2=\frac{2}{\sqrt{x-2}+1}$
Nếu $x-3=0$
$\Leftrightarrow x=3$ (tm)
Nếu $x-2=\frac{2}{\sqrt{x-2}+1}$
$\Leftrightarrow a^2=\frac{2}{a+1}$ (đặt $\sqrt{x-2}=a$)
$\Leftrightarrow a^3+a^2-2=0$
$\Leftrightarrow a^2(a-1)+2a(a-1)+2(a-1)=0$
$\Leftrightarrow (a-1)(a^2+2a+2)=0$
Hiển nhiên $a^2+2a+2=(a+1)^2+1>0$ với mọi $a$ nên $a-1=0$
$\Leftrightarrow a=1\Leftrightarrow \sqrt{x-2}=1\Leftrightarrow x=3$ (tm)
Vậy pt có nghiệm duy nhất $x=3$.
\(ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-2\sqrt{2x^2+5x-3}=1+x\sqrt{2x-1}-2x\sqrt{x+3}\\ \Leftrightarrow\left(2x-2\right)-\left(2\sqrt{2x^2+5x-3}-4\right)=\left(x\sqrt{2x-1}-x\right)-\left(2x\sqrt{x+3}-4x\right)-3x+3\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(2x^2+5x-7\right)}{\sqrt{2x^2+5x-3}+4}=\dfrac{x\left(2x-2\right)}{\sqrt{2x-1}+1}-\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}-3\left(x-1\right)\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(x-1\right)\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x\left(x-1\right)}{\sqrt{2x-1}+1}+\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}+3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left[2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3=0\left(1\right)\end{matrix}\right.\)
Với \(x\ge\dfrac{1}{2}\Leftrightarrow-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}>-\dfrac{2\cdot8}{4}=-4\)
\(-\dfrac{2x}{\sqrt{2x-1}+2}>-\dfrac{1}{2};\dfrac{2x}{\sqrt{x+3}+4x}>0\)
Do đó \(\left(1\right)>2-4-\dfrac{1}{2}+3=\dfrac{1}{2}>0\) nên (1) vô nghiệm
Vậy PT có nghiệm duy nhất \(x=1\)
1. ĐKXĐ: $x\geq \frac{-3}{5}$
PT $\Leftrightarrow 5x+3=3-\sqrt{2}$
$\Leftrightarrow x=\frac{-\sqrt{2}}{5}$
2. ĐKXĐ: $x\geq \sqrt{7}$
PT $\Leftrightarrow (\sqrt{x}-7)(\sqrt{x}+7)=4$
$\Leftrightarrow x-49=4$
$\Leftrightarrow x=53$ (thỏa mãn)
Câu 4:
Giả sử điều cần chứng minh là đúng
\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)
Vậy điều cần chứng minh là đúng
2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)
⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)
⇔ x = 5
Vậy S = {5}
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
\(Đk:-1\le x\le3\)
Đặt: \(\hept{\begin{cases}u=\sqrt{x+1}\\v=\sqrt{3-x}\end{cases}}\) Ta suy ra:
\(u^2=x+1\)
\(3u^2-2v^2=5x-3\)
\(4u^2-v^2=5x+1\)
\(u^2+v^2=4\)
Pt đã cho trở thành:
\(2\left(3u^2-2v^2\right)+5uv^2=3\left(4u^2-v^2\right)\Leftrightarrow6u^2\left(2-u\right)=v^2\left(u+3\right)\)
Thay \(v^2=4-u\) ta thu được pt:
\(2\left(3u^2-2v^2\right)+5uv^2=3\left(4u^2-v^2\right)\)
\(\Leftrightarrow6u^2\left(2-u\right)=\left(4-u^2\right)\left(u+3\right)\Leftrightarrow\orbr{\begin{cases}u=2\\u=\frac{5+\sqrt{145}}{10}\end{cases}}\)
Từ đó tìm đc các nghiệm của pt là: \(\orbr{\begin{cases}x=3\\x=\frac{7+\sqrt{145}}{10}\end{cases}}\)
\(DK:x\ge1\)
\(\Leftrightarrow\left(3\sqrt{x-1}-3\right)+\left(\sqrt{x+2}-2\right)-\left(10x-20\right)-\left(6\sqrt{x^2+x-2}-12\right)=0\)
\(\Leftrightarrow3\left(\sqrt{x-1}-1\right)+\left(\sqrt{x+2}-2\right)-10\left(x-2\right)-6\left(\sqrt{x^2+x-2}-2\right)=0\)
\(\Leftrightarrow\frac{3\left(x-2\right)}{\sqrt{x-1}+1}+\frac{x-2}{\sqrt{x+2}+2}-10\left(x-2\right)-\frac{6\left(x^2+x-6\right)}{\sqrt{x^2+x-2}+2}=0\)
\(\Leftrightarrow\frac{3\left(x-2\right)}{\sqrt{x-1}+1}+\frac{x-2}{\sqrt{x+2}+2}-10\left(x-2\right)-\frac{6\left(x-2\right)\left(x+3\right)}{\sqrt{x^2+x-2}+2}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{3}{\sqrt{x-1}+1}+\frac{1}{\sqrt{x+2}}-10-\frac{6x+18}{\sqrt{x^2+x-2}+2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\\frac{3}{\sqrt{x-1}+1}+\frac{1}{\sqrt{x+2}}=10+\frac{6x+18}{\sqrt{x^2+x-2}+2}\end{cases}}\)
Cái PT 2 nó vô nghiệm,chắc la quy dong lên là duoc
Vay PT co nghiem la \(x=2\)
Vẫn là liên hợp nhưng em có cách khác:D Nó sẽ nhanh hơn ở chỗ xử lý cái ngoặc to đấy:)
\(ĐK:x\ge1\)
\(PT\Leftrightarrow6\left(\sqrt{x^2+x-2}-x\right)+12x-24+3\left[\left(x-1\right)-\sqrt{x-1}\right]+x-\sqrt{x+2}=0\)
\(\Leftrightarrow\frac{6\left(x-2\right)}{\sqrt{x^2+x-2}+x}+12\left(x-2\right)+\frac{3\left(x-2\right)\left(x-1\right)}{\left(x-1\right)+\sqrt{x-1}}+\frac{\left(x-2\right)\left(x+1\right)}{x+\sqrt{x+2}}=0\)
\(\Leftrightarrow\left(x-2\right)\left[\frac{6}{\sqrt{x^2+x-2}+x}+12+\frac{3\left(x-1\right)}{\left(x-1\right)+\sqrt{x-1}}+\frac{\left(x+1\right)}{x+\sqrt{x+2}}\right]=0\)
Cái ngoặc to không cần đánh giá cũng >0 :D. Vậy x = 2 (TM)
P/s: Em có tính sai chỗ nào không nhỉ:))