K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

\(\frac{2004x}{2x^2+x+1}+\frac{2005x}{2x^2+x+1}=902\)

\(\Leftrightarrow\frac{2004x+2005x}{2x^2+x+1}=902\)

\(\Leftrightarrow\frac{4009x}{2x^2+x+1}=902\)

\(\Leftrightarrow4009x=902\left(2x^2+x+1\right)\)

\(\Leftrightarrow4009x=1804x^2+902x+902\)

\(\Leftrightarrow-1804x^2+3107x=902\)

Bn tự làm tiếp. Số to quá bn -.-

23 tháng 3 2016

Với giả sử rằng  \(x\ne0\)  thì ta biến đổi phương trình đã cho dưới dạng:

\(\frac{2004}{2x+1+\frac{1}{x}}+\frac{2005}{2x+2+\frac{1}{x}}=902\)  \(\left(1\right)\)

Đặt  \(2x+\frac{1}{x}+1=t\)  \(\left(2\right)\)  \(\Rightarrow\)  \(2x+\frac{1}{x}+2=t+1\) thì phương trình  \(\left(1\right)\)  trở thành:

\(\frac{2004}{t}+\frac{2005}{t+1}=902\)

\(\Leftrightarrow\)  \(\frac{2004\left(t+1\right)+2005t}{t\left(t+1\right)}=902\)

Khử mẫu ở hai vế của phương trình trên, ta được:

\(2004\left(t+1\right)+2005t=902t\left(t+1\right)\)

\(\Leftrightarrow\)  \(2004t+2004+2005t=902t^2+902t\)

\(\Leftrightarrow\)  \(902t^2-3107t-2004=0\)

\(\Leftrightarrow\)  \(\left(t-4\right)\left(902t+501\right)=0\)

\(\Leftrightarrow\)  \(t=4\)  hoặc  \(t=-\frac{501}{902}\)

\(\text{*)}\)  Với  \(t=4\)  thì  từ  \(\left(2\right)\)  \(\Rightarrow\)  \(2x+\frac{1}{x}+1=4\)  \(\Leftrightarrow\)  \(2x+\frac{1}{x}=3\)  \(\Leftrightarrow\)  \(2x^2+1=3x\)  (do  \(x\ne0\))

\(\Leftrightarrow\)  \(2x^2-3x+1=0\)  \(\Leftrightarrow\)  \(\left(x-1\right)\left(2x-1\right)=0\)  \(\Leftrightarrow\)  \(x=1\)  hoặc  \(x=\frac{1}{2}\)  (thỏa mãn)

\(\text{*)}\)  Với  \(t=-\frac{501}{902}\)  thì  từ  \(\left(2\right)\)  \(\Rightarrow\)  \(2x+\frac{1}{x}+1=-\frac{501}{902}\)  (vô nghiệm)

Vậy, tập nghiệm của phương trình   \(\left(1\right)\)  là   \(S=\left\{1;\frac{1}{2}\right\}\)

8 tháng 2 2018

\(\text{a) }x^2-2005x-2006=0\\ \Leftrightarrow x^2-2006x+x-2006=0\\ \Leftrightarrow\left(x^2-2006x\right)+\left(x-2006\right)=0\\ \Leftrightarrow x\left(x-2006\right)+\left(x-2006\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-2006\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2006=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2006\end{matrix}\right.\)

Vậy tập nghiệm phương trình là \(S=\left\{-1;2016\right\}\)

\(\text{b) }\left|x-2\right|+\left|x-3\right|+\left|2x-8\right|=9\)

Lập bảng xét dấu:

x x-2 x-3 2x-8 2 3 4 0 0 0 _ _ _ + + + _ _ + + + _

+) Xét \(x< 2\Leftrightarrow\left(2-x\right)+\left(3-x\right)+\left(8-2x\right)=9\)

\(\Leftrightarrow2-x+3-x+8-2x=9\\ \Leftrightarrow13-4x=9\\ \Leftrightarrow4x=4\\ \Leftrightarrow x=1\left(TM\right)\)

+) Xét \(2\le x< 3\Leftrightarrow\left(x-2\right)+\left(3-x\right)+\left(8-2x\right)=9\)

\(\Leftrightarrow x-2+3-x+8-2x=9\\ \Leftrightarrow9-2x=9\\ \Leftrightarrow2x=0\\ \Leftrightarrow x=0\left(KTM\right)\)

+) Xét \(3\le x< 4\Leftrightarrow\left(x-2\right)+\left(x-3\right)+\left(8-2x\right)=9\)

\(\Leftrightarrow x-2+x-3+8-2x=9\\ \Leftrightarrow3=9\left(\text{ Vô lí }\right)\)

+) Xét \(x\ge4\Leftrightarrow\left(x-2\right)+\left(x-3\right)+\left(2x-8\right)=9\)

\(\Leftrightarrow x-2+x-3+2x-8=9\\ \Leftrightarrow4x-11=9\\ \Leftrightarrow4x=20\\ \Leftrightarrow x=5\left(TM\right)\)

Vậy tập nghiệm phương trình là \(S=\left\{5;1\right\}\)

7 tháng 10 2017

câu b.

|x-2| +|x-3| +|2x-8|

x<2 =>x-2+x-3+2x-8=-9=> 4x=4=> x=1 nhận

2<=x<3 <=>x-2+3-x+8-2x=9=>2x=0=>x=0 loại

3<=x<4<=>x-2+x-3+8-2x =9=> 3=9 loại

x>=4 <=>x-2+x-3+2x-8=9=> 4x=22=> x=11/2nhận

a, Phân tích vế trái bằng \(\left(x-2006\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2006\right)\left(x+1\right)=0\Rightarrow x_1;x_2=2006\)

c, Xét phương trình với 4 khoảng sau : 

\(x< 2;2\le x< 3;3\le x< 4;x\ge4\)

Rồi suy ra nghiệm của phương trình là : \(x=1;x=5,5\)

18 tháng 8 2019

a.\(x^2-2005x-2006=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2006\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2006\end{cases}}\)

b.Ta co:\(|x-2|+|x+3|+|2x-8|\ge|2x+1|+|8-2x|\ge9|\)

Dau '=' xay ra khi \(2\le x\le4\)

25 tháng 3 2022

\(\dfrac{2x-1}{x+1}=\dfrac{-2x+1}{x-5}\left(x\ne-1;5\right)\)

\(\dfrac{2x-1}{x+1}=\dfrac{2x-1}{5-x}\)

\(x+1=5-x\)

\(2x=4\Rightarrow x=2\)

9 tháng 5 2021

\(\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\left(ĐKXĐ:x\ne-1,x\ne3\right)\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}\)

\(\Rightarrow x\left(x+1\right)-x\left(x-3\right)=4x\)

\(\Leftrightarrow x^2+x-x^2+3x=4x\)

\(\Leftrightarrow x^2+x-x^2+3x-4x=0\)

\(\Leftrightarrow0x=0\)

Phương trình có vô số nghiệm , trừ x = -1,x = 3

Vậy ...

\(\dfrac{12x+1}{12}< \dfrac{9x+1}{3}-\dfrac{8x+1}{4}\)

\(\Leftrightarrow12\cdot\dfrac{12x+1}{12}< 12\cdot\dfrac{9x+1}{3}-12\cdot\dfrac{8x+1}{4}\)

\(\Leftrightarrow12x+1< 4\left(9x+1\right)-3\left(8x+1\right)\)

\(\Leftrightarrow12x+1< 36x+4-24x-3\)

\(\Leftrightarrow12x+1< 12x+1\)

\(\Leftrightarrow12x-12x< 1-1\)

\(\Leftrightarrow0x< 0\)

Vậy S = {x | x \(\in R\)}

 

29 tháng 3 2022

a) \(\left(2x-1\right)^2=3x\left(2x-1\right)\)

\(\left(2x-1\right)^2-3x\left(2x-1\right)=0\)

\(\left(2x-1\right)\left(2x-1-3x\right)=0\)

\(\left(2x-1\right)\left(-x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

29 tháng 3 2022

\(a,\left(2x-1\right)^2=3x\left(2x-1\right)\\ \Leftrightarrow4x^2-4x+1=6x^2-3x\\ \Leftrightarrow6x^2-3x-4x^2+4x-1=0\\ \Leftrightarrow2x^2+x-1=0\\ \Leftrightarrow2x^2+2x-x-1=0\\ \Leftrightarrow2x\left(x+1\right)-\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

\(b,ĐKXĐ:x\ne0,2\\ \dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x^2-2x}\\ \Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{x^2+2x-x+2-2}{x\left(x-2\right)}=0\\ \Rightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

a: =>|x-3/2|=2

\(\Leftrightarrow x-\dfrac{3}{2}\in\left\{2;-2\right\}\)

hay \(x\in\left\{\dfrac{7}{2};-\dfrac{1}{2}\right\}\)

f: \(\Leftrightarrow\left[{}\begin{matrix}2x+3=x-2\\2x+3=2-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
31 tháng 5 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

12 tháng 8 2021

1/ ( x-1) (2x+1) =0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-0,5\end{matrix}\right.\)

2/ x (2x-1) (3x+15) =0

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-5\end{matrix}\right.\)

3/ (2x-6) (3x+4).x=0

\(\Rightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)

4/ (2x-10)(x2+1)=0

\(\Rightarrow\left[{}\begin{matrix}2x-10=0\\x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x^2=-1\left(loại\right)\end{matrix}\right.\)

5/ (x2+3) (2x-1) =0

\(\Rightarrow\left[{}\begin{matrix}x^2+3=0\\2x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x^2=-3\left(loại\right)\\x=0,5\end{matrix}\right.\)

6/ (3x-1) (2x2 +1)=0

\(\Rightarrow\left[{}\begin{matrix}3x-1=0\\2x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x^2=-0,5\left(loại\right)\end{matrix}\right.\)

 

1: Ta có: \(\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

2: Ta có: \(x\left(2x-1\right)\left(3x+15\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-5\end{matrix}\right.\)

3: Ta có: \(\left(2x-6\right)\left(3x+4\right)x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)