Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+3x^2+x^3+2x+2=0\)
\(\Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+x+1\right)=0\)
Do 2 thừa số ở VT đều > 0
\(\Rightarrow\) PTVN
\(x^4+x^3+3x^2+2x+2=0\\ \Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\\ \Leftrightarrow x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x^2+x+1\right)\left(x^2+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+x+1=0\left(VN\right)\\x^2+2=0\left(VN\right)\end{matrix}\right.\)
Vậy phương trình vô nghiệm
Với dạng bài này ta chỉ việc chia hoocne là ra nhé!
\(C1:x^4+x^3-8x^2-9x-9=0\\ \Leftrightarrow\left(x-3\right)\left(x^3+4x^2+4x+3\right)\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+x+1\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x^2+x+1=0\left(VN\right)\end{matrix}\right.\)
\(C2:x^4+2x^3-3x^2-8x-4=0\\ \Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)
a)(3x-1)(4x-8)=0
⇔3x-1=0 hoặc 4x-8=0
1.3x-1=0⇔3x=1⇔x=1/3
2.4x-8=0⇔4x=8⇔x=2
phương trình có 2 nghiệm:x=1/3 và x=2
b)(x-2)(1-3x)=0
⇔x-2=0 hoặc 1-3x=0
1.x-2=0⇔x=2
2.1-3x=0⇔-3x=1⇔x=-1/3
phương trình có 2 nghiệm:x=2 và x=-1/3
c)(x-3)(x+4)-(x-3)(2x-1)=0
⇔(x+4)(2x-1)=0
⇔x+4=0 hoặc 2x-1=0
1.x+4=0⇔x=-4
2.2x-1=0⇔2x=1⇔x=1/2
phương trình có hai nghiệm:x=-4 và x=1/2
d)(x+1)(x+2)=2x(x+2)
⇔(x+1)(x+2)-2x(x+2)=0
⇔2x(x+1)=0
⇔2x=0 hoặc x+1=0
1.2x=0⇔x=0
2.x+1=0⇔x=-1
phương trình có 2 nghiệm:x=0 và x=-1
VT=(x-1)3+(2-x)(4+2x+x2)+3x(x+2)=9x+7 (*)
thay (*) vào VT của pt đầu ta đc
=>9x+7=17
=>9x=10
=>x=\(\frac{10}{9}\)
a) \(2\left(x-2\right)+x-2=3\left(x-2\right)\)
\(\Leftrightarrow\left(2+1\right)\left(x-2\right)=3\left(x-2\right)\)
Vì phương trình trên luôn đúng với mọi x nên có vô số nghiệm
B) \(4\left(1-x\right)+3x=1-x\)
\(4-4x+3x=1-x\Leftrightarrow4-x=1-x\)(vô nghiệm)
Ta có:
\(\left\{{}\begin{matrix}\left|x+4\right|\ge0\\\left|3x-6\right|\ge0\end{matrix}\right.\)\(\forall x\)
\(\Rightarrow\)|x+4|+|3x-6|\(\ge0\forall x\)
\(\Leftrightarrow4x-3\ge0\)
\(\Leftrightarrow x\ge\frac{3}{4}\)
\(\Rightarrow\left|x+4\right|=x+4\)
Xét trường hợp:
với \(\frac{3}{4}\le x< 2\)
\(\Rightarrow\left|3x-6\right|=6-3x\)
=> x+4+6-3x=4x-3
Tự giải ( nhớ đối chiếu đk)
Với x\(\ge2\)
\(\Rightarrow\left|3x-6\right|=3x-6\)
=> x+4-6+3x=4x-3
Tự giải ( nhớ đối chiếu đk)
KL:.......................
(x-1)3+(2-x)(4+2x+x2)+3x(x+2)=17
x3 - 3. x2 .1 + 3.x.12 + 13 + 8 + 4x + 2x2 - 4x - 2x2 - x3 + 3x2 + 6x = 17
x3 - 3x2 + 3x + 1 + 8 + 4+ 2x2 - 4x - 2x2 - x2 + 3x3 + 6x = 17
( x3 - x3 ) ( -3x2 + 3x2 + 2x2 - 2x2 ) (3x + 4x - 4x) (1+8+4) = 17
3x . 13 = 17
3x = 17/13
x = 17/13 : 3
x = 17/39
Ko bt đúng hay sai nữa. Nếu sai thì mấy pn sửa lại giúp mk nha
c.
Tập xác định của phương trình
2
Lời giải bằng phương pháp phân tích thành nhân tử
3
Sử dụng phép biến đổi sau
4
Giải phương trình
5
Đơn giản biểu thức
6
Giải phương trình
7
Đơn giản biểu thức
8
Giải phương trình
9
Giải phương trình
10
Đơn giản biểu thức
11
Giải phương trình
12
Đơn giản biểu thức
13
Lời giải thu được
a,
Tập xác định của phương trình
2
Lời giải bằng phương pháp phân tích thành nhân tử
3
Sử dụng phép biến đổi sau
4
Giải phương trình
5
Đơn giản biểu thức
6
Giải phương trình
7
Đơn giản biểu thức
8
Giải phương trình
9
Đơn giản biểu thức
10
Lời giải thu được
có: x(x+3)(x^2+3x+4)=-4
\(\Leftrightarrow\)(x^2+3x)(x^2+3x+4)+4=0
\(\Leftrightarrow\)(x^2+3x)\(^2\)+4(x^2+3x)+4=0
\(\Leftrightarrow\)(x^2+3x+2)\(^2\)=0
\(\Leftrightarrow\)x\(^2\)+3x+2=0
\(\Leftrightarrow\)(x+1)(x+2)=0
\(\Leftrightarrow\)x+1=0 hoặc x+2=0
*) Nếu x+2=0\(\Leftrightarrow\)x=-2
*) Nếu x+1=0\(\Leftrightarrow\)x=-1
Vậy S={ 2;-1}
<=> x(x3+33)=-4 <=> x4+27x+4=0 <=>