K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^3+7x^2-56x+48=0\)

\(=>x^3-x^2+8x^2-8x-48x+48=0\)

\(=>\left(x+12\right)\left(x-4\right)\left(x-1\right)=0\)

TH1 : \(x+12=0=>x=-12\)

TH2 : \(x-4=0=>x=4\)

TH3 : \(x-1=0=>x=1\)

Ủng hộ nha

f: Ta có: \(16x^2-9\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{7}\end{matrix}\right.\)

15 tháng 10 2020

3x (5x2 - 2x - 1)

18 tháng 1 2022

*Gọi a=x-1, b=2x-3, c=3x-5.

-Phương trình trở thành:

a3+b3+c3-3abc=0 ⇔(a+b)3+c3-3ab(a+b)-3abc=0

⇔(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=0

⇔(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)=0

⇔(a+b+c)(a2+b2+c2-ab-ac-bc)=0

⇔a+b+c=0 hay a2+b2+c2-ab-ac-bc=0

*a+b+c=0 ⇔x-1+2x-3+3x-5=0 ⇔6x-9=0 ⇔x=\(\dfrac{3}{2}\)

*a2+b2+c2-ab-ac-bc=0

Vì a2+b2+c2-ab-ac-bc≥0 và dấu bằng xảy ra khi và chỉ khi a=b=c nên

=>x-1=2x-3 ⇔x=2

=>x-1=3x-5 ⇔x=2

=>2x-3=3x-5⇔ x=2

 

 

 

 

 

18 tháng 1 2022

mình camon bn nha

20 tháng 1 2018

Giúp nhá^^

\(x^3+x^2-56x=0\)

\(\Leftrightarrow x^3-7x^2+8x^2-56x=0\)

\(\Leftrightarrow x^2\left(x-7\right)+8x\left(x-7\right)=0\)

\(\Leftrightarrow\left(x-7\right)\left(x^2+8x\right)=0\)

\(\Leftrightarrow x\left(x-7\right)\left(x+8\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-7=0\\x+8=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=7\\x=-8\end{cases}}}\)

P/s tham khảo nha ...Nhưng mà đừng bấm đúng cho tớ

\(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)

\(x^4+x^3+2x^2+x^3+x^2+2x+x^2+x+2=12\)

\(x^4+2x^3+4x^2+3x+2=12\)

\(x^4+2x^3+4x^2+3x+2-12=0\)

\(x^4+2x^3+4x^2+3x-10=0\)

\(\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)=0\)

TH1 : \(x^2+x+5=0\)

\(\Delta=1^2-4.1.5=1-20=-19< 0\)

Nên phương trình vô nghiệm.

TH2 : \(x+2=0\Leftrightarrow x=-2\)  

TH3 : \(x-1=0\Leftrightarrow x=1\)

13 tháng 5 2020

\(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)

Đặt \(x^2+x+1=t\)

\(\Rightarrow t\left(t+1\right)=12\)\(\Leftrightarrow t^2+t=12\)

\(\Leftrightarrow t^2+t-12=0\)\(\Leftrightarrow\left(t^2-3t\right)+\left(4t-12\right)=0\)

\(\Leftrightarrow t\left(t-3\right)+4\left(t-3\right)=0\)\(\Leftrightarrow\left(t-3\right)\left(t+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-3=0\\t+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=3\\t=-4\end{cases}}\)

Ta thấy: \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow t>0\)\(\Rightarrow t=3\)thoả mãn

\(\Rightarrow x^2+x+1=3\)\(\Leftrightarrow x^2+x+1-3=0\)\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x^2-x\right)+\left(2x-2\right)=0\)\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-2;1\right\}\)

17 tháng 3 2020

\(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)

<=> \(\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)

<=> \(\left(3x-1\right)\left(x^2-7x+12\right)=0\)

<=> \(\left(3x-1\right)\left(x^2-3x-4x+12\right)=0\)

<=> \(\left(3x-1\right)\left[x\left(x-3\right)-4\left(x-3\right)\right]=0\)

<=> \(\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)

<=>  3x -1 = 0 hoặc x - 3 = 0 hoặc x - 4 = 0

<=> x = 1/3 hoặc x = 3 hoặc x = 4 

Vậy S = { 1/3 ; 3; 4 }

21 tháng 8 2020

\(x^2+2x+2=0\)   

\(x^2+2x+1+1=0\)  

\(\left(x+1\right)^2=-1\) ( vô lí vì \(\left(x+1\right)^2\ge0\forall x\) 

Vậy phương trình vô nghiệm 

12 tháng 7 2018

\(\left(x-2\right)^3+\left(5-2x\right)^3=0\)

\(\Leftrightarrow\left(x-2+5-2x\right)\left(\left(x-2\right)^2-\left(x-2\right)\left(5-2x\right)+\left(5-2x\right)^2\right)=0\)

\(\Leftrightarrow\left(3-x\right)\left(x^2-4x+4-\left(5x-4x^2-10+4x\right)+25-20x+4x^2\right)=0\)

\(\Leftrightarrow\left(3-x\right)\left(x^2-4x+4-5x+4x^2+10-4x+25-20x+4x^2\right)=0\)

\(\Leftrightarrow\left(3-x\right)\left(9x^2-33x+39\right)=0\)

Phân tích  tiếp nhé

12 tháng 7 2018

Bạn ơi, mình chỉ làm đc đến đây rồi ko biết làm tiếp ntn đó

15 tháng 1 2018

câu này xài cách đặt ẩn giống câu trên luôn

b) Đặt n = x2-3x+3 ta được

n(n+x)=2x2

n2 +nx-2x2=0

n^2-1nx+2nx-2x^2=0

n(n-x)+2x(n-x)=0

(n+2x)(n-x)=0

(x^2-3x+3+2x)(x^2-3x+3-x)=0

(x^2-x+3)(x^2-4x+3)=0

mà x^2-x+3 =0                                     

 x^2-1/2.2x+1/4-1/4+3=0                     

(x+1/2)^2+11/4 >0( loại)   

Vậy ta còn    

x^2-4x+3=0

 x^2-1x-3x+3=0                 

 (x-1)(x-3)=0

<=> x-1=0 hay x-3=0

       x=1     hay x=3

Vậy S= (1;3)

                 

                                                                

15 tháng 1 2018

a) (x -1)(x-6)(x-5)(x-2)=252

<=>( x^2-7x+6)(x^2-7x+10)=252

Đặt n=x^2-7x+6 ta được :

n(n+4)=252

n^2+4n-252=0

n^2-14n+18n-252=0

n(n-14)+18(n-14)=0

(n+18)(n-14)=0

r tới đây bạn tự giải tiếp nha, mình đánh máy ko quen nên hơi lâu, với bạn tự thêm dấu tương đương nữa, chờ mình câu2