Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\orbr{\begin{cases}x^3=-1\\x^3=8\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
\(y^2-7y-8=0\Rightarrow\orbr{\begin{cases}y=-1\\y=8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\sqrt[3]{-1}=-1\\x=\sqrt[3]{8}=2\end{cases}}\)
x3-4x2+7x-6=0
=>x3-2x2-2x2+3x+4x-6=0
=>x3-2x2+3x-2x2+4x-6=0
=>x(x2-2x+3)-2(x2-2x+3)=0
=>(x-2)(x2-2x+3)=0
=>x-2=0 hoặc x2-2x+3=0
- Với x-2=0 =>x=2
- Với x2-2x+3=0 =>vô nghiệm
Vậy pt trên có nghiệm là x=2
Bài `1:`
`h)(3/4x-1)(5/3x+2)=0`
`=>[(3/4x-1=0),(5/3x+2=0):}=>[(x=4/3),(x=-6/5):}`
______________
Bài `2:`
`b)3x-15=2x(x-5)`
`<=>3(x-5)-2x(x-5)=0`
`<=>(x-5)(3-2x)=0<=>[(x=5),(x=3/2):}`
`d)x(x+6)-7x-42=0`
`<=>x(x+6)-7(x+6)=0`
`<=>(x+6)(x-7)=0<=>[(x=-6),(x=7):}`
`f)x^3-2x^2-(x-2)=0`
`<=>x^2(x-2)-(x-2)=0`
`<=>(x-2)(x^2-1)=0<=>[(x=2),(x^2=1<=>x=+-2):}`
`h)(3x-1)(6x+1)=(x+7)(3x-1)`
`<=>18x^2+3x-6x-1=3x^2-x+21x-7`
`<=>15x^2-23x+6=0<=>15x^2-5x-18x+6=0`
`<=>(3x-1)(5x-1)=0<=>[(x=1/3),(x=1/5):}`
`j)(2x-5)^2-(x+2)^2=0`
`<=>(2x-5-x-2)(2x-5+x+2)=0`
`<=>(x-7)(3x-3)=0<=>[(x=7),(x=1):}`
`w)x^2-x-12=0`
`<=>x^2-4x+3x-12=0`
`<=>(x-4)(x+3)=0<=>[(x=4),(x=-3):}`
`m)(1-x)(5x+3)=(3x-7)(x-1)`
`<=>(1-x)(5x+3)+(1-x)(3x-7)=0`
`<=>(1-x)(5x+3+3x-7)=0`
`<=>(1-x)(8x-4)=0<=>[(x=1),(x=1/2):}`
`p)(2x-1)^2-4=0`
`<=>(2x-1-2)(2x-1+2)=0`
`<=>(2x-3)(2x+1)=0<=>[(x=3/2),(x=-1/2):}`
`r)(2x-1)^2=49`
`<=>(2x-1-7)(2x-1+7)=0`
`<=>(2x-8)(2x+6)=0<=>[(x=4),(x=-3):}`
`t)(5x-3)^2-(4x-7)^2=0`
`<=>(5x-3-4x+7)(5x-3+4x-7)=0`
`<=>(x+4)(9x-10)=0<=>[(x=-4),(x=10/9):}`
`u)x^2-10x+16=0`
`<=>x^2-8x-2x+16=0`
`<=>(x-2)(x-8)=0<=>[(x=2),(x=8):}`
Đặt \(x^3=y\)
Khi đó pt trở thành \(y^2-7y+6=0\)
\(\Leftrightarrow y^2-6y-y+6=0\)
\(\Leftrightarrow\left(y-6\right)\left(y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-6=0\\y-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=6\\y=1\end{cases}}\)
\(\left(+\right)y=1\Rightarrow x^3=1\Leftrightarrow x=1\)
\(\left(+\right)y=6\Rightarrow x^3=6\Leftrightarrow x=\sqrt[3]{6}\)
Vậy phương trình có nghiệm \(x=1;x=\sqrt[3]{6}\)
6x4+7x3-36x2-7x+6=0
<=> 6x4-2x3+9x3-3x2-33x2+11x-18x+6=0
<=> 2x3(3x-1)+3x2(3x-1)-11x(3x-1)-6(3x-1)=0
<=> (3x-1)(2x3+3x2-11x-6)=0
<=>(3x-1)(2x3-4x2+7x2-14x+3x-6)=0
<=>(3x-1)[2x2(x-2)+7x(x-2)+3(x-2)]=0
<=>(3x-1)(x-2)(2x2+7x+3)=0
<=>(3x-1)(x-2)(2x2+6x+x+3)=0
<=>(3x-1)(x-2)[2x(x+3)+(x+3)]=0
<=>(3x-1)(x-2)(x+3)(2x+1)=0
th1: 3x+1=0 <=> x=\(-\frac{1}{3}\)
th2: x-2=0 <=> x=2
th3: x+3=0 <=> x=-3
th4: 2x+1=0 <=> x=-\(\frac{1}{2}\)
\(x^3-7x+6=0\)
\(\Leftrightarrow x^3-x^2+x^2-x-6x+6=0\)
\(\Leftrightarrow x^2\left(x-1\right)+x\left(x-1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-2x+3x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x\left(x-2\right)+3\left(x-2\right)\right]\left(x-1\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x-1\right)=0\)
\(\Rightarrow x=\left\{-3;1;2\right\}\)