Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay m= 2 vào pt A (A= x+3(m-3x2)2 =m), ta được:
A= x+ 3( 2 - 3x2)2 = 2 <=> x = -1
Câu a, đặt x+1/y=a;y+1/x=b. đề bài tương đương vs việc giải pt:
a+b=9/2 (1)
ab=9/2 (2)
lấy (1) bình phương lên, khai triển ra ( tự làm ) rồi trừ đi 4 lần (2), ta được a^2-2ab+b^2=9/4
<=> (a-b)^2=9/4
<=> a-b= +- 3/4 (đã có tổng và đã có hiệu, giải như bài toán cấp 1 thui)
tìm đc a,b rùi thì tìm đc x và y dễ như bỡn!
Câu b, ( giải chi tiết hơn):
gọi 2 pt lần lượt là (1) và (2) nha
Nhận xét: nếu x=y thay vào (1) ta đc pt vô nghiệm => x khác y => x-y khác 0
Nhân (1) với (x-y), ta đc x^3-y^3=7(x-y) (4)
Nhận xét: Nếu x^2=y^2 thay vào (2) ta đc pt vô nghiệm => x^2 khác y^2 => x^2-y^2 khác 0
Nhân (2) với (x^2-y^2), ta đc x^6-y^6=21(x^2-y^2)
<=> (x^3-y^3)(x^3+y^3)=21(x+y)(x-y) (5)
thế (4) vào (5), ta rút gọn 2 bên với 7(x-y), còn lại đc: (x+y)(x^2-xy+y^2)=3(x+y)
<=> x^2-xy+y^2=3 (6)
cộng (1) với (6) lại rùi chia mỗi vế đi 2, ta đc x^2+y^2=5
trừ (1) với (6), ta được xy=2
Từ 2 cái trên cộng rùi trừ vs nhau, viết thành hàng đẳng thức rùi khai căn ra luôn x và y, chúc bạn học tốt ^^
3, y nhỏ nhất khi y^2 nhỏ nhất
y^2 = \(x+2\sqrt{x-1}+x-2\sqrt{x-1}+2\sqrt{\left(x-2\sqrt{x-1}\right)\left(x+2\sqrt{x-1}\right)}\)
= \(2x+2\sqrt{x^2-4x+4}=2x+2\sqrt{\left(x-2\right)^2}=2x+2!x-2!\)
(Đến đây thì chịu rồi)
A^2 = \(2+\frac{\sqrt{7}}{2}+2-\frac{\sqrt{7}}{2}-2\sqrt{\left(2+\frac{\sqrt{7}}{2}\right)\left(2-\frac{\sqrt{7}}{2}\right)}\)
A^2 = \(4\) \(-2\sqrt{4-\frac{7}{4}}=\) \(4-2\sqrt{\frac{9}{4}}=4-2\cdot\frac{3}{2}=4-3=1\)
=> A = 1
Câu 1a thì được nè :v
( 3x + 1)( 4x + 1)( 6x + 1)( 12x + 1) = 2
⇔ 4( 3x + 1)3( 4x + 1)2( 6x + 1)( 12x + 1) = 2.4.3.2
⇔ ( 12x + 4)( 12x + 3)( 12x + 2)( 12x + 1) =48 ( 1)
Đặt : 12x + 1 = a , ta có :
( 1) ⇔ a( a+ 1)( a + 2)( a + 3) = 48
⇔ ( a2 + 3a)( a2 + 3a +2) = 48
Đặt : a3 + 3a = t , ta có :
t( t +2) =48
⇔ t2 + 2t - 48 = 0
⇔ t2 - 6t + 8t - 48 = 0
⇔ t( t - 6) + 8( t - 6) = 0
⇔ ( t - 6)( t + 8) = 0
⇔ t = 6 hoặc t = -8
Tự thế vào mà tìm a sau đó suy ra x nha
Bài 1:
b)
HPT \(\left\{\begin{matrix} x^2+\frac{1}{y^2}+\frac{4x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \left(x+\frac{1}{y}\right)^2+\frac{2x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
Lấy PT(1) trừ 2PT(2) thu được:
\(\left(x+\frac{1}{y}\right)^2-4\left(x+\frac{1}{y}\right)=-4\)
\(\Leftrightarrow \left(x+\frac{1}{y}-2\right)^2=0\Rightarrow x+\frac{1}{y}=2\)
Thay vào thu được \(\frac{x}{y}=-1\)
Theo định lý Viete đảo thì \((x,\frac{1}{y})\) là nghiệm của PT:
\(X^2-2X-1=0\)
\(\Rightarrow (x,\frac{1}{y})=(1+\sqrt{2}; 1-\sqrt{2})\) hoặc \((1-\sqrt{2}; 1+\sqrt{2})\)
Tức là: \((x,y)=(1+\sqrt{2}, -1-\sqrt{2}); (1-\sqrt{2}; -1+\sqrt{2})\)