Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-4x^2-9x+36=0\)
=> \(x^2\left(x-4\right)-9\left(x-4\right)=0\)
=> \(\left(x-4\right)\left(x^2-9\right)=0\)
=> \(\orbr{\begin{cases}x-4=0\\x^2-9=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=\pm3\end{cases}}\)
\(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)
=> \(\left(x^2-9+x-3\right)\left[x^2-9-\left(x-3\right)\right]=0\)
=> \(\left(x^2+x-12\right)\left(x^2-9-x+3\right)=0\)
=> \(\left(x^2+x-12\right)\left(x^2-x-6\right)=0\)
=> \(\left(x^2-3x+4x-12\right)\left(x^2+2x-3x-6\right)=0\)
=> \(\left[x\left(x-3\right)+4\left(x-3\right)\right]\left[x\left(x+2\right)-3\left(x+2\right)\right]=0\)
=> \(\left(x-3\right)\left(x+4\right)\left(x-3\right)\left(x+2\right)=0\)
=> \(\left(x-3\right)^2\left(x+4\right)\left(x+2\right)=0\)
=> \(\hept{\begin{cases}\left(x-3\right)^2=0\\x+4=0\\x+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\x=-4\\x=-2\end{cases}}\)
\(x^3-3x+2=0\)
=> \(x^3-x-2x+2=0\)
=> \(x^2\left(x-1\right)-2\left(x-1\right)=0\)
=> \(\left(x-1\right)\left(x^2-2\right)=0\)
=> x = 1
1. \(x^6-2x^3+1=0\Leftrightarrow\left(x^3-1\right)^2=0\Leftrightarrow x=1\)
2. \(x^6+\dfrac{1}{4}x^3+\dfrac{1}{64}=0\Leftrightarrow\left(x^3\right)^2+2.x^3.\dfrac{1}{8}+\left(\dfrac{1}{8}\right)^2=0\Leftrightarrow\left(x+\dfrac{1}{8}\right)^2=0\Leftrightarrow x=-\dfrac{1}{2}\)4. \(x^3-10x^2+25x=0\Leftrightarrow x^3-5x^2-5x^2+25x=0\)
\(\Leftrightarrow x^2\left(x-5\right)-5x\left(x-5\right)=0\)
\(\Leftrightarrow x\left(x-5\right)^2=0\Leftrightarrow x=5\)
5. \(\dfrac{1}{4}x^3-3x^2+9x=0\)
\(\Leftrightarrow x\left(\dfrac{1}{4}x^2-3x+9\right)=0\)
\(\Leftrightarrow x\left[\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.3+3^2\right]=0\)
\(\Leftrightarrow x\left(\dfrac{1}{2}x-3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
6. \(x^5-16x=0\Leftrightarrow x\left(x^4-16\right)=0\Leftrightarrow x\left(x^2-4\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\\x^2=-4\left(l\right)\end{matrix}\right.\)
7. \(4x^2+4x-3=0\Leftrightarrow4x^2-2x^2-6x-3=0\)
\(\Leftrightarrow2x\left(2x-1\right)-3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
8. \(4x^2+28x+48=0\Leftrightarrow4x^2+12x+14x+48=0\)
\(\Leftrightarrow4x\left(x+3\right)+12\left(x+4\right)=0\)
\(\Leftrightarrow\left(4x+12\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-4\end{matrix}\right.\)
9. \(9x^2-12x+3=0\Leftrightarrow9x^2-9x-3x+3=0\Leftrightarrow9x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(9x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
1) x3 - 3x2 = 0
<=> x2( x - 3 ) = 0
<=> \(\orbr{\begin{cases}x^2=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
2) 5x( x - 2020 ) - x + 2020 = 0
<=> 5x( x - 2020 ) - ( x - 2020 ) = 0
<=> ( x - 2020 )( 5x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-2020=0\\5x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2020\\x=\frac{1}{5}\end{cases}}\)
3) ( 3x - 5 )2 = ( x + 1 )2
<=> ( 3x - 5 )2 - ( x + 1 )2 = 0
<=> [ ( 3x - 5 ) - ( x + 1 ) ][ ( 3x - 5 ) + ( x + 1 ) ] = 0
<=> ( 3x - 5 - x - 1 )( 3x - 5 + x + 1 ) = 0
<=> ( 2x - 6 )( 4x - 4 ) = 0
<=> \(\orbr{\begin{cases}2x-6=0\\4x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
4) ( x2 - 2x )2 - 2( x - 1 )2 + 2 = 0
<=> ( x2 - 2x )2 - 2( x2 - 2x + 1 ) + 2 = 0
<=> ( x2 - 2x )2 - 2x2 + 4x - 2 + 2 = 0
<=> ( x2 - 2x )2 - 2( x2 - 2x ) = 0
<=> ( x2 - 2x )( x2 - 2x - 2 ) = 0
<=> \(\orbr{\begin{cases}x^2-2x=0\\x^2-2x-2=0\end{cases}}\)
+) x2 - 2x = 0 <=> x( x - 1 ) = 0 <=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
+) x2 - 2x - 2 = 0
<=> x2 - 2x + 1 - 3 = 0
<=> ( x2 - 2x + 1 ) = 3
<=> ( x - 1 )2 = ( ±√3 )2
<=> \(\orbr{\begin{cases}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\)
1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)
2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)
3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)
4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)
\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)
5, em xem lại đề nhé
à lag tý @@
5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)
\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)
Tìm x:
1. \(25x^2-20x+4=0\)
⇔ \(\left(5x-2\right)^2=0\)
⇔ \(5x-2=0\)
⇔ \(5x=2\)
⇔ \(x=\dfrac{2}{5}\)
⇒ S = \(\left\{\dfrac{2}{5}\right\}\)
2. \(\left(2x-3\right)^2-\left(2x+1\right).\left(2x-1\right)=0\)
⇔ \(4x^2-12x+9-\left(4x^2-1\right)=0\)
⇔ \(4x^2-12x+9-4x^2+1=0\)
⇔ \(-12x+10=0\)
⇔ \(-12x=-10\)
⇔ \(x=\dfrac{5}{6}\)
⇒ S \(=\left\{\dfrac{5}{6}\right\}\)
3. \(\left(\dfrac{1}{2}x-1\right)\left(\dfrac{1}{2}x+1\right)-\left(\dfrac{1}{2}x-1\right)^2=0\)
⇔ \(\dfrac{1}{4}x^2-1-\left(\dfrac{1}{4}x^2-x+1\right)=0\)
⇔ \(\dfrac{1}{4}x^2-1-\dfrac{1}{4}x^2+x-1=0\)
⇔ \(-2+x=0\)
⇔ \(x=2\)
⇒ S \(=\left\{2\right\}\)
4. \(\left(2x-3\right)^2+\left(2x+5\right)^2=8\left(x+1\right)^2\)
⇔ \(4x^2-12x+9+4x^2+20x+25=8\left(x^2+2x+1\right)\)
⇔ \(8x^2+8x+34=8x^2+16x+8\)
⇔ \(8x+34=16x+8\)
⇔ \(8x-16x=8-34\)
⇔ \(-8x=-26\)
⇔ \(x=\dfrac{13}{4}\)
⇒ S \(=\left\{\dfrac{13}{4}\right\}\)
5.\(4x^2+12x-7=0\)
⇔ \(4x^2+14x-2x-7=0\)
⇔ \(2x\left(2x+7\right)-\left(2x+7\right)=0\)
⇔ \(\left(2x+7\right)\left(2x-1\right)=0\)
⇔ \(\left[{}\begin{matrix}2x+7=0\\2x-1=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\dfrac{-7}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
⇒ S \(=\left\{\dfrac{-7}{2};\dfrac{1}{2}\right\}\)
6. \(\dfrac{1}{4}x^2+\dfrac{2}{3}x-\dfrac{5}{9}=0\)
⇔ \(9x^2+24x-20=0\)
⇔ \(9x^2+30x-6x-20=0\)
⇔ \(3x\left(3x+10\right)-2\left(3x+10\right)=0\)
⇔ \(\left(3x+10\right)\left(3x-2\right)=0\)
⇔ \(\left[{}\begin{matrix}3x+10=0\\3x-2=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\dfrac{-10}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)
⇒ S \(=\left\{\dfrac{-10}{3};\dfrac{2}{3}\right\}\)
7. \(24\dfrac{8}{9}-\dfrac{1}{4}x^2-\dfrac{1}{3}x=0\)
⇔ \(\dfrac{224}{9}-\dfrac{1}{4}x^2-\dfrac{1}{3}x=0\)
⇔ \(896-9x^2-12x=0\)
⇔ \(-896+9x^2+12x=0\)
⇔ \(9x^2+12x-896=0\)
⇔ \(9x^2-84x+96x-896=0\)
⇔ \(3x\left(3x-28\right)+32\left(3x-28\right)=0\)
⇔ \(\left(3x-28\right)\left(3x+32\right)=0\)
⇔ \(\left[{}\begin{matrix}3x-28=0\\3x+32=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\dfrac{28}{3}\\x=\dfrac{-32}{3}\end{matrix}\right.\)
⇒ S \(=\left\{\dfrac{-32}{3};\dfrac{28}{3}\right\}\)