K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

câu 98

tách thành \(\sqrt[3]{9-x}-2=2x^2+3x-3\sqrt{5x-1}\)

       \(< =>\sqrt[3]{9-x}-2=2x^2-2+x-1+\sqrt{4x^2}-\sqrt{5x-1}\) 

rồi nhân liên hợp 2cái đầu bậc 3 nhé, nhân liên hợp 2 cái cuối, nghiệm là 1

11 tháng 8 2017

111\(\sqrt{2x+1}+3\sqrt{4x^2-2x+1=3+\sqrt{8x^3+1}}\)

122\(\sqrt{x}+\sqrt[4]{x}+4\sqrt{17-x}+8\sqrt[4]{17-x}=34\)

tớ bh mới bđ học bài

dùng bđt xem sao

7 tháng 8 2019

\(\sqrt{x^2.\left(x^2+1\right)+1}+\sqrt{3}.\left(x^2+1\right)=3\sqrt{3}.x\)

\(\Leftrightarrow\sqrt{x^4+x^2+1}+\sqrt{3}.x^2+\sqrt{3}=3\sqrt{3}.x\)

\(\Leftrightarrow\sqrt{x^4+x^2+1}+\sqrt{3}=3\sqrt{3}.x-\sqrt{3}.x^2\)

\(\Leftrightarrow\sqrt{x^4+x^2+1}=3\sqrt{3}.x-\sqrt{3}.x^2-\sqrt{3}\)

\(\Leftrightarrow\left(\sqrt{x^4+x^2+1}\right)^2=\left(3\sqrt{3}.x-\sqrt{3}.x^2-\sqrt{3}\right)\)

\(\Leftrightarrow x^4+x^2+1=-18x^3+3x^4+33x^2-18x+3\)

\(\Leftrightarrow x^4+x^2+1+18x^3-3x^4-33x^2+18x-3=0\)

\(\Leftrightarrow-2x^4-32x^2-2+18x^3+18x=0\)

\(\Leftrightarrow-2\left(x^4+16x^2+1-9x^3-9x\right)=0\)

\(\Leftrightarrow-2\left(x^3-8x^2+8x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow-2\left(x^2-7x+1\right)\left(x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-7x+1\right)\left(x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-7x+1\right)\left(x-1\right)^2=0\)

Nhưng vì \(x^2-7x+1\ne0\)nên:

\(x-1=0\Rightarrow x=1\)

\(\Rightarrow x=1\)

12 tháng 8 2017

toán lớp 9 thì ai mà biết chỉ lớp 5 thôi

đáp án là : 0 bít !

12 tháng 8 2017

sống bớt xàm đi bạn trẻ

17 tháng 8 2017

b,c đề ko ổn

17 tháng 8 2017

đm m lm lắm thế 

1 tháng 9 2017

Trước tiên ta chứng minh:

\(-2005x\sqrt{4-4x}\le2005\left(x^2-x+1\right)\)

Với \(x\ge0\)thì bất đẳng thức đúng.

Với \(x< 0\)

\(\left(-x\sqrt{4-4x}\right)^2\le\left(x^2-x+1\right)^2\)

\(\Leftrightarrow\left(x^2+x-1\right)^2\ge0\)đúng

Quay lại bài toán ta có:

\(\left(x-x^2\right)\left(x^2+3x+2007\right)-2005x\sqrt{4-4x}=30\sqrt[4]{x^2+x-1}+2006\ge2006\)

\(\Leftrightarrow2006\le\left(x-x^2\right)\left(x^2+3x+2007\right)-2005x\sqrt{4-4x}\le\left(x-x^2\right)\left(x^2+3x+2007\right)+2005\left(x^2-x+1\right)\)

\(\Leftrightarrow\left(x^2+x-1\right)^2\le0\)

\(\Rightarrow x^2+x-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\\x=\frac{-1-\sqrt{5}}{2}\end{cases}}\)

PS: Để số 2008 t không giải ra nên thay số 2006 giải được. Chắc bác chép nhầm đề.

1 tháng 9 2017

$(x-x^2)(x^2+3x+2007)-2005x\sqrt{4-4x}=30\sqrt[4]{x^2+x-1}+2006$ - Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học

12 tháng 8 2017

câu 2 đề sai

12 tháng 8 2017

ok tớ sẽ giải nhunh ! sửa câu 2 đi rồi tớ sẽ làm cho bn !

câu 1 ) thì đúng

câu 2 sai đề

16 tháng 8 2017

d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)

ĐK:\(x\ge-3\)

\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)

\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)

\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)

\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)

16 tháng 8 2017

d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)

ĐK:\(x\ge-3\)

\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)

\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)

\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)

\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)