K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

ĐK \(x^2-\frac{1}{2x}+\frac{1}{16}\ge0\)

Pt \(\Rightarrow x^2-\frac{1}{2x}+\frac{1}{16}=\left(\frac{1}{4}-x\right)^2\)với \(x\le\frac{1}{4}\)

\(\Rightarrow-\frac{1}{2x}=-\frac{1x}{2}\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\left(l\right)\\x=-1\left(tm\right)\end{cases}}\)

Vậy \(x=-1\)

19 tháng 6 2018

\(\Rightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{2x^3}{2}+\frac{x^2}{2}+\frac{2x}{2}+\frac{1}{2}\)

\(\Rightarrow\sqrt{x^2+x+\frac{1}{2}-\frac{1}{4}}=\sqrt{x^2+x+\frac{1}{4}}=x^3+\frac{x^2}{2}+x+\frac{1}{2}\)

\(\Rightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}=x+\frac{1}{2}=x^3+\frac{x^2}{2}+x+\frac{1}{2}\)

\(\Rightarrow x^3+\frac{x^2}{2}+x+\frac{1}{2}-x-\frac{1}{2}=x^3+\frac{x^2}{2}=0\Rightarrow\frac{2x^3+x^2}{2}=0\)

\(\Rightarrow2x^3+x^2=0\Rightarrow x^2\left(2x+1\right)=0\Rightarrow\hept{\begin{cases}x^2=0\Rightarrow x=0\\2x+1=0\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\end{cases}}\)

vậy x=0 và x=-1/2

8 tháng 10 2018

\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\) (*) (ĐKXĐ: \(\forall x\in R\))

\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left[x^2\left(2x+1\right)+\left(2x+1\right)\right]\)

\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\left|x+\frac{1}{2}\right|}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)

+) Xét \(x+\frac{1}{2}\ge0\Leftrightarrow x\ge-\frac{1}{2}\). Khi đó pt (*) trở thành:

\(\sqrt{x^2-\frac{1}{4}+x+\frac{1}{2}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)

\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)

\(\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\) (Do \(x\ge\frac{1}{2}\))

\(\Leftrightarrow\frac{\left(2x+1\right)\left(x^2+1\right)-\left(2x+1\right)}{2}=0\)

\(\Leftrightarrow x^2\left(2x+1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\) (t/m ĐKXĐ)

+) Xét \(x+\frac{1}{2}< 0\Leftrightarrow x< -\frac{1}{2}\). Khi đó: \(2x+1< 0\)

Ta thấy: \(2x+1< 0;x^2+1>0;\frac{1}{2}>0\Rightarrow\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)< 0\)

Mà \(\sqrt{x^2-\frac{1}{4}+\left|x+\frac{1}{2}\right|}\ge0\) nên Vô lí ---> Loại TH này.

Vậy tập nghiệm của pt (*) là \(S=\left\{0;-\frac{1}{2}\right\}.\)

rthgsdgdh olweikehgf

11 tháng 6 2017

xem lại đề câu 1đi nhé 

11 tháng 6 2017

b)\(\frac{1}{x+\sqrt{x^2+x}}+\frac{1}{x-\sqrt{x^2+x}}=x\)

\(\Leftrightarrow\frac{x-\sqrt{x^2+x}}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}+\frac{x+\sqrt{x^2+x}}{\left(x-\sqrt{x^2+x}\right)\left(x+\sqrt{x^2+x}\right)}-\frac{x\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{x-\sqrt{x^2+x}+x+\sqrt{x^2+x}-x^2}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{-x^2+2x}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{-x\left(x+2\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

Dễ thấy: x=0 ko là nghiệm nên \(x+2=0\Rightarrow x=-2\)

c)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}=0\)

\(\Leftrightarrow\left(3x-2\right)\left(\frac{2}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4}{\sqrt{9x^2+16}}\right)=0\)

\(\Leftrightarrow x=\frac{2}{3}\)

a: \(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+4=x^2-1\\x>=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x=-5\\x>=2\end{matrix}\right.\Leftrightarrow x=\dfrac{5}{4}\left(loại\right)\)

b: \(\Leftrightarrow\sqrt{2x^2+1}=5\)

\(\Leftrightarrow2x^2+1=25\)

\(\Leftrightarrow2x^2=24\)

hay \(x\in\left\{2\sqrt{3};-2\sqrt{3}\right\}\)

c: \(\Leftrightarrow\left|x\right|+\left|x-1\right|=2\)

Trường hợp 1: x<0

Pt trở thành -x-x+1=2

=>-2x=1

hay x=-1/2(nhận)

TRường hợp 2:0<=x<1

Pt trở thành x+1-x=2

=>1=2(loại)

Trường hợp 3: x>=1

Pt trở thành x+x-1=2

=>2x-1=2

hay x=3/2(nhận)

13 tháng 5 2016

\(pt\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\left|x+\frac{1}{2}\right|}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)

Ta thấy vế phải bằng \(\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\), vế trái là căn thức nên để pt có nghiệm thì vế phải phải dương. Hay \(2x+1\ge0\)

Với \(x\ge\frac{-1}{2}\) ta có \(pt\Leftrightarrow\sqrt{x^2-\frac{1}{4}+x+\frac{1}{2}}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)

\(\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\Leftrightarrow x+\frac{1}{2}=\left(x^2+1\right)\left(x+\frac{1}{2}\right)\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(x^2+1-1\right)=0\Leftrightarrow x^2\left(x+\frac{1}{2}\right)=0\Leftrightarrow x=0\) hoặc \(x=\frac{-1}{2}\)

Vậy pt đã cho có 2 nghiệm là \(x=0;x=\frac{-1}{2}\)

Chúc em luôn học tập tốt :))

5 tháng 5 2017

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

6 tháng 5 2017

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

24 tháng 9 2016

1) đặt đk rùi bình phương 2 vế là ok

2) \(pt\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+2}}{x-x-2}+\frac{\sqrt{x+2}-\sqrt{x+4}}{x+2-x-4}+\frac{\sqrt{x+4}-\sqrt{x+6}}{x+4-x-6}=\frac{\sqrt{10}}{2}-1\)(ĐKXĐ : \(x\ge0\))

<=> \(\frac{\sqrt{x}-\sqrt{x+6}}{-2}=\frac{\sqrt{10}}{2}-1\)

<=> \(\frac{\sqrt{x+6}-\sqrt{x}}{2}=\frac{\sqrt{10}-2}{2}\)

<=> \(\sqrt{x+6}-\sqrt{x}=\sqrt{10}-2\)

<=> \(\sqrt{x+6}+2=\sqrt{10}+\sqrt{x}\)

đến đây bình phương 2 vế rùi giải bình thường nhé 

4 tháng 3 2018

hello bạn