K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2021

Hệ \(\Leftrightarrow x+1+3x-1+3\sqrt[3]{\left(x+1\right)\left(3x-1\right)}\left(\sqrt[3]{x+1}+\sqrt[3]{3x-1}\right)=x-1\)

\(\Leftrightarrow3x+1+3\sqrt[3]{\left(x+1\right)\left(3x-1\right)\left(x-1\right)}=0\)

\(\Leftrightarrow3x+1=-3\sqrt[3]{\left(x+1\right)\left(3x-1\right)\left(x-1\right)}\)

\(\Leftrightarrow27x^3+9x+27x^2+1=-27\left(x^2-1\right)\left(3x-1\right)\)

\(\Leftrightarrow27x^3+9x+27x^2+1+81x^3-81x-27x^2+27=0\)

\(\Leftrightarrow108x^3-72x+28=0\)

\(\Leftrightarrow x^3-\dfrac{2}{3}x+\dfrac{7}{27}=0\)

- AD công thức các đa nô :

\(\Rightarrow x=\sqrt[3]{-\dfrac{-\dfrac{2}{3}}{2}+\sqrt{\dfrac{\left(-\dfrac{2}{3}\right)^2}{4}+\dfrac{\left(\dfrac{7}{27}\right)^3}{27}}}+\sqrt[3]{-\dfrac{-\dfrac{2}{3}}{2}-\sqrt{\dfrac{\left(-\dfrac{2}{3}\right)^2}{4}+\dfrac{\left(\dfrac{7}{27}\right)^3}{27}}}\)

\(\Rightarrow x\approx-0,96685\)

 

 

 

 

15 tháng 7 2023

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

NV
22 tháng 2 2021

1.

ĐKXĐ: \(x\ge\dfrac{3+\sqrt{41}}{4}\)

\(\Leftrightarrow x^2+x-1+2\sqrt{x\left(x^2-1\right)}=2x^2-3x-4\)

\(\Leftrightarrow x^2-4x-3-2\sqrt{\left(x^2-x\right)\left(x+1\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x}=a>0\\\sqrt{x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow a^2-3b^2-2ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-3b\right)=0\)

\(\Leftrightarrow a=3b\)

\(\Leftrightarrow\sqrt{x^2-x}=3\sqrt{x+1}\)

\(\Leftrightarrow x^2-x=9\left(x+1\right)\)

\(\Leftrightarrow...\) (bạn tự hoàn thành nhé)

NV
22 tháng 2 2021

2.

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{x+1}=a\ge0\) pt trở thành:

\(x^3+3\left(x^2-4a^2\right)a=0\)

\(\Leftrightarrow x^3+3ax^2-4a^3=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+2a\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=x\left(x\ge0\right)\\2\sqrt{x+1}=-x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+1\\x^2=4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-4x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=2-2\sqrt{2}\end{matrix}\right.\)

NV
22 tháng 2 2021

1.

ĐKXĐ: \(x\ge-\dfrac{1}{3}\)

\(\Leftrightarrow3x^2-3x+\left(x+1-\sqrt{3x+1}\right)+\left(x+2-\sqrt{5x+4}\right)=0\)

\(\Leftrightarrow3\left(x^2-x\right)+\dfrac{x^2-x}{x+1+\sqrt{3x+1}}+\dfrac{x^2-x}{x+2+\sqrt{5x+4}}=0\)

\(\Leftrightarrow\left(x^2-x\right)\left(3+\dfrac{1}{x+1+\sqrt{3x+1}}+\dfrac{1}{x+2+\sqrt{5x+4}}\right)=0\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow...\)

NV
22 tháng 2 2021

2.

Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt[3]{2-8x^3}=b\end{matrix}\right.\)

Ta được hệ:

\(\left\{{}\begin{matrix}\left(2a-1\right)b=a\\a^3+b^3=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2ab\\\left(a+b\right)^3-3ab\left(a+b\right)=2\end{matrix}\right.\)

\(\Rightarrow8\left(ab\right)^3-6\left(ab\right)^2=2\)

\(\Leftrightarrow\left(ab-1\right)\left[4\left(ab\right)^2+ab+1\right]=0\)

\(\Leftrightarrow ab=1\Rightarrow a+b=2\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2\\ab=1\end{matrix}\right.\) \(\Leftrightarrow a=b=1\)

\(\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)

17 tháng 5 2016

Điều kiện \(x\in R\)

Lập phương 2 vế phương trình đã cho ta được :

\(2x-1+x-1+3\sqrt[3]{2x-1}\left(\sqrt[3]{2x-1}+\sqrt[3]{x-1}\right)=3x-1\)

\(\Leftrightarrow\sqrt[3]{2x-1}\sqrt[3]{x-1}\left(\sqrt[3]{2x-1}+\sqrt[3]{x-1}\right)=1\)

mà \(\sqrt[3]{2x-1}+\sqrt[3]{x-1}=\sqrt[3]{3x+1}\) nên ta có :

\(\sqrt[3]{2x-1}\sqrt[3]{x-1}\sqrt[3]{3x+1}=1\)

\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)\left(3x+1\right)=1\)

\(\Leftrightarrow x\in\left\{0;\frac{7}{6}\right\}\)

Thử lại ta thấy \(x=\frac{7}{6}\) là nghiệm duy nhất của phương trình đã cho 

5 tháng 4 2021

undefined