K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 12 2020

ĐKXĐ: \(x\ge-\dfrac{1}{3}\)

\(\Leftrightarrow\sqrt{3x+1}-\sqrt{2x+3}=\dfrac{x-2}{4}\)

\(\Leftrightarrow\dfrac{x-2}{\sqrt{3x+1}+\sqrt{2x+3}}=\dfrac{x-2}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\dfrac{1}{\sqrt{3x+1}+\sqrt{2x+3}}=\dfrac{1}{4}\left(1\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow\sqrt{3x+1}+\sqrt{2x+3}=4\)

\(\Leftrightarrow5x+4+2\sqrt{6x^2+11x+3}=16\)

\(\Leftrightarrow2\sqrt{6x^2+11x+3}=12-5x\) (\(x\le\dfrac{12}{5}\))

\(\Leftrightarrow4\left(6x^2+11x+3\right)=\left(12-5x\right)^2\)

\(\Leftrightarrow x^2-164x+132=0\Rightarrow\left[{}\begin{matrix}x=82-8\sqrt{103}\\x=82+8\sqrt{103}>\dfrac{12}{5}\left(loại\right)\end{matrix}\right.\)

15 tháng 7 2023

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

6 tháng 4 2017

a) \(\dfrac{3x^2+1}{\sqrt{x-1}}=\dfrac{4}{\sqrt{x-1}}\)

ĐKXĐ: \(x>1\)

\(3x^2+1=4\)

\(3x^2=3\)

\(x^2=1\)

\(x=\pm1\)

=> Pt vô nghiệm

 

6 tháng 4 2017

b) ĐKXĐ: x>-4

\(x^2+3x+4=x+4\)

\(x^2+2x=0\)

\(x\left(x+2\right)=0\)

\(\left[{}\begin{matrix}x=0\\x+2=0\Leftrightarrow x=-2\end{matrix}\right.\)

NV
23 tháng 12 2020

Bạn xem lại đề

Dưới căn là \(\sqrt{2x^2+1}\) hay \(\sqrt{2x^2-1}\)

25 tháng 12 2020

Nguyễn Việt Lâm Mình cũng đang thắc mắc, dường như đề bài thầy bình cho sai hay sao ấy

NV
22 tháng 2 2021

1.

ĐKXĐ: \(x\ge\dfrac{3+\sqrt{41}}{4}\)

\(\Leftrightarrow x^2+x-1+2\sqrt{x\left(x^2-1\right)}=2x^2-3x-4\)

\(\Leftrightarrow x^2-4x-3-2\sqrt{\left(x^2-x\right)\left(x+1\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x}=a>0\\\sqrt{x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow a^2-3b^2-2ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-3b\right)=0\)

\(\Leftrightarrow a=3b\)

\(\Leftrightarrow\sqrt{x^2-x}=3\sqrt{x+1}\)

\(\Leftrightarrow x^2-x=9\left(x+1\right)\)

\(\Leftrightarrow...\) (bạn tự hoàn thành nhé)

NV
22 tháng 2 2021

2.

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{x+1}=a\ge0\) pt trở thành:

\(x^3+3\left(x^2-4a^2\right)a=0\)

\(\Leftrightarrow x^3+3ax^2-4a^3=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+2a\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=x\left(x\ge0\right)\\2\sqrt{x+1}=-x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+1\\x^2=4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-4x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=2-2\sqrt{2}\end{matrix}\right.\)