Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)\(\frac{\left(6-2x\right)\left(\sqrt{5+x}\right)}{\left(\sqrt{5+x}\right)\left(\sqrt{5-x}\right)}-\frac{\left(6+2x\right)\left(\sqrt{5-x}\right)}{\left(\sqrt{5+x}\right)\left(\sqrt{5-x}\right)}=\frac{8\left(\sqrt{5+x}\right)\left(\sqrt{5-x}\right)}{3\left(\sqrt{5+x}\right)\left(\sqrt{5-x}\right)}\)
\(3\left(6-2x\right)\left(\sqrt{5+x}\right)-3\left(6+2x\right)\left(\sqrt{5-x}\right)=8\left(\sqrt{5+x}\right)\left(\sqrt{5-x}\right)\)
ĐK: \(-5< x< 5\)
Đặt \(a=\sqrt{5+x};b=\sqrt{5-x}\left(a,b>0\right)\)
Khi đó ta có \(6-2x=2b^2-4;6+2x=2a^2-4\)
Khi đó ta có:
\(\frac{2b^2-4}{a}+\frac{2a^2-4}{b}=\frac{8}{3}\Leftrightarrow\left(2b^2-4\right)a+\left(2a^2-4\right)b=\frac{8}{3}ab\)
\(\Leftrightarrow2ab\left(a+b\right)-4\left(a+b\right)=\frac{8}{3}ab\)
Từ đó ta có hệ phương trình
\(\hept{\begin{cases}2ab\left(a+b\right)-4\left(a+b\right)=\frac{8}{3}ab\\a^2+b^2=10\end{cases}\Leftrightarrow\hept{\begin{cases}2ab\left(a+b\right)-4\left(a+b\right)=\frac{8}{3}ab\\\left(a+b\right)^2-2ab=10\end{cases}}}\)
Đặt S=a+b; P=ab (\(S\ge\sqrt{10}\))
Hệ phương trình trở thành
\(\hept{\begin{cases}2SP-4S=\frac{8}{3}P\left(1\right)\\S^2-2P=10\left(2\right)\end{cases}}\)
Từ phương trình (2) ta có \(P=\frac{S^2-10}{2}\)thế lên phương trình trên và rút gọn ta được \(6S^3-8S^2-84S+80=0\Leftrightarrow\left(S-4\right)\left(3S^2+8S-10\right)=0\Leftrightarrow S=4\left(tmđk\right)\)
\(3S^2+8S-10=0\left(VN\right)\)vì \(S>\sqrt{10}\)
S=4 \(\Rightarrow P=3\Leftrightarrow\sqrt{5+x}\sqrt{5-b}=3\Leftrightarrow25-x^2=9\Leftrightarrow x^2=16\Leftrightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}\left(tm\right)}\)
Vậy PT có 2 nghiệm là x=4; x=-4
Đặt \(\sqrt[3]{\frac{2x}{x+1}}=a\) thì
PT \(\Leftrightarrow a+\frac{1}{a}=0+2\)
\(\Leftrightarrow a^2-2a+1=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x}{x+1}}=1\)
\(\Leftrightarrow2x=x+1\)
\(\Leftrightarrow x=1\)
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
1/ \(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
\(\Leftrightarrow\frac{3-x}{\sqrt{5-x}}+\frac{3+x}{\sqrt{5+x}}=\frac{4}{3}\)
Đặt \(\hept{\begin{cases}\sqrt{5-x}=a\\\sqrt{5+x}=b\end{cases}}\) thì ta có:
\(\hept{\begin{cases}\frac{a^2-2}{a}+\frac{b^2-2}{b}=\frac{4}{3}\\a^2+b^2=10\end{cases}}\)
Tới đây thì đơn giản rồi nhé
a) \(\sqrt{\frac{2x-1}{x+1}}+\sqrt{\frac{x+1}{2x-1}}=2\)
Ta có: \(\sqrt{\frac{2x-1}{x+1}}+\sqrt{\frac{x+1}{2x-1}}\ge2\sqrt{\sqrt{\frac{2x-1}{x+1}}\cdot\sqrt{\frac{x+1}{2x-1}}}=2\) (BĐT Cô-si)
Mà \(\sqrt{\frac{2x-1}{x+1}}+\sqrt{\frac{x+1}{2x-1}}=2\) (theo đề bài)
Suy ra dấu bằng phải xảy ra \(\Rightarrow\sqrt{\frac{2x-1}{x+1}}=\sqrt{\frac{x+1}{2x-1}}\) \(\Leftrightarrow\frac{2x-1}{x+1}=\frac{x+1}{2x-1}\) \(\Leftrightarrow\left(2x-1\right)^2=\left(x+1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+1\\2x-1=-x-1\end{matrix}\right.\Leftrightarrow\) \(x=2\) (tmđkxđ) hoặc \(x=0\) (không tmđkxđ)
Vậy \(S=\left\{2\right\}\).
Bạn đừng quên tự tìm ĐKXĐ cho câu a nhé bạn.
c) \(x+\frac{1}{x}+4\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)+6=0\) ĐKXĐ: \(x>0\)
Vì \(x>0\Rightarrow x+\frac{1}{x}+4\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)+6>0\)
Vậy \(S=\varnothing\).
đến câu hỏi tương tự hình như có hay sao á
chúc may mắn
:Ở bàn học lớp mấy vậy