K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2019

\(a,\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)  ĐKXĐ : \(x\ne0;x\ne\frac{3}{2}\)

\(\Leftrightarrow\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{5\left(2x-3\right)}{x\left(2x-3\right)}\)

\(\Leftrightarrow x-3=10x-15\)

\(\Leftrightarrow x-10x=3-15\)

\(\Leftrightarrow-9x=-12\)

\(\Leftrightarrow x=\frac{-12}{-9}=\frac{4}{3}\)(TMĐKXĐ)

KL :....

25 tháng 2 2019

\(b,\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)   ĐKXĐ : \(x\ne0;2\)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow x^2+2x-x+2=2\)

\(\Leftrightarrow x^2+x=2-2\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

KL ::

19 tháng 4 2020
https://i.imgur.com/wgXaoMx.jpg
9 tháng 8 2015

\(-2=\frac{2}{\left(x^2+5\right)\left(x^2+4\right)}+\frac{2}{\left(x^2+4\right)\left(x^2+3\right)}+\frac{2}{\left(x^2+3\right)\left(x^2+2\right)}+\frac{2}{\left(x^2+2\right)\left(x^2+1\right)}\)

<=>\(\frac{1}{\left(x^2+5\right)\left(x^2+4\right)}+\frac{1}{\left(x^2+4\right)\left(x^2+3\right)}+\frac{1}{\left(x^2+3\right)\left(x^2+2\right)}+\frac{1}{\left(x^2+2\right)\left(x^2+1\right)}=-1\)

<=>\(\frac{1}{x^2+1}-\frac{1}{x^2+2}+\frac{1}{x^2+2}-\frac{1}{x^2+3}+...+\frac{1}{x^2+4}-\frac{1}{x^2+5}=-1\)

<=>\(\frac{1}{x^2+1}-\frac{1}{x^2+5}=-1\)

<=>(x2+5)-(x2+1)=-(x2+1)(x2+5)

<=>4=-x4-6x2-5

<=>x4+6x2+9=0

<=>(x2+3)2=0

<=>x2+3=0

Do x2>0

=>x2+3>0 nên PT vô nghiệm

28 tháng 1 2020

\(ĐKXĐ:x\ne-1;x\ne2\)

\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5x+5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow x-2-5x-5=15\)

\(\Leftrightarrow-4x=22\Leftrightarrow x=\frac{-11}{2}\)

Vậy \(S=\left\{\frac{-11}{2}\right\}\)

28 tháng 1 2020

\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\left(ĐKXĐ:x\ne-1;x\ne2\right)\)

\(\Leftrightarrow\frac{1\left(x-2\right)-5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\frac{-4x-7}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow-4x-7=15\)

\(\Leftrightarrow-4x=22\)

\(\Leftrightarrow x=22:\left(-4\right)\)

\(\Leftrightarrow x=\frac{-22}{4}=\frac{-11}{2}\)

Vậy tập nghiệm \(S=\left\{\frac{-11}{2}\right\}\)

21 tháng 7 2019

\(\frac{\left(x-2\right)^2}{3}-\frac{2x-1}{4}=4-\frac{\left(2x-3\right)^2}{6}.\)

\(\Rightarrow\frac{4\left(x-2\right)^2}{12}-\frac{3\left(2x-1\right)^2}{12}=\frac{48}{12}-\frac{2\left(2x-3\right)^2}{12}\)

\(\Rightarrow4\left(x^2-4x+4\right)-3\left(4x^2-4x+1\right)=48-2\left(4x^2-12x+9\right)\)

\(\Rightarrow4x^2-16x+16-12x^2+12x-3=48-8x^2+24x-18\)

\(\Rightarrow-16x+12x+16-3=24x+48-18\)

\(\Rightarrow28x=-17\Leftrightarrow x=-\frac{17}{28}\)

21 tháng 7 2019

nhung sao lai binh phuong len vay

-------------------ko chép đề nha---------

\(\Leftrightarrow\frac{4\left(x^2-4x+4\right)-3\left(2x+1\right)}{12}=\frac{12-2\left(4x^2-12x+9\right)}{12}\)

\(\Rightarrow4x^2+16x+16-6x-3=12-8x^2+24x-18\)

\(\Leftrightarrow4x^2+10x+13=-8x^2+24x-6\)

\(\Leftrightarrow4x^2+8x^2+10x-24x+13+6=0\)

\(\Leftrightarrow12x-14x+19=0\)

Ta có :\(\Delta'=7^2-12.19=-179< 0\)

\(\Rightarrow\)phương trình vô nghiệm

12 tháng 6 2016

điều kiền x # 0

đặt \(t=x+\frac{1}{x};đk:t\ge2\)=>\(x^2+\frac{1}{x^2}=t^2-2\)

Ta được phương trình mới ẩn t :  \(t^2-2t-5=0\)

tự giải phương trình nhé. lấy nghiệm t>= 2