K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2022

\(\Rightarrow x+1+2x-2020=3x-2019\Leftrightarrow3x-2019=3x-2019\)

Vậy pt có vô số nghiệm 

3 tháng 2 2022

undefined

12 tháng 3 2023

a) \(3\left(2x-x\right)=5x+1\)

\(\Leftrightarrow6x-3x=5x+1\)

\(\Leftrightarrow6x-3x-5x=1\)

\(\Leftrightarrow-2x=1\)

\(\Leftrightarrow x=\dfrac{1}{-2}=-\dfrac{1}{2}\)

b) \(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}+\dfrac{x+3}{2019}+\dfrac{x+4}{2018}=0\)

\(\Leftrightarrow\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)

\(\Leftrightarrow\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)

\(\Leftrightarrow\left(x+2022\right)\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}\right)\)

\(\Leftrightarrow x+2022=0\)

\(\Leftrightarrow x=-2022\)

 

12 tháng 3 2023

câu a sai đề bài ạ

24 tháng 5 2022

Tham khảo :

undefined

24 tháng 5 2022

Nhận thấy vế trái luôn dương nên \(x-2020\ge0\Leftrightarrow x\ge2020\)

Với \(x\ge2020\Rightarrow\left\{{}\begin{matrix}x-2017\ge0\\2x-2018\ge0\\3x-2019\ge0\end{matrix}\right.\)

PT trở thành: \(x-2017+2x-2018+3x-2019=x-2020\)

Hay kết hợp với điều kiện \(x=\dfrac{4034}{5}\) suy ra PT đã cho vô nghiệm 

=>\(\left(\dfrac{x+1}{2021}+1\right)+\left(\dfrac{x+2}{2020}+1\right)+\left(\dfrac{x+3}{2019}+1\right)+\left(\dfrac{x+2028}{2}-3\right)=0\)

=>x+2022=0

=>x=-2022

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

5 tháng 10 2021

\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)

Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương

\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)

Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm

\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)

Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm

5 tháng 10 2021

2b,

Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp

Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt

vô đây đọc nhé

29 tháng 1 2016

\(\Leftrightarrow\left(3x-5\right)^3-3\left(x-1\right)\left(2x-3\right)\left(3x-5\right)+\left(2x-3\right)^3+\left(x-1\right)^3=9\left(x-2\right)^2\left(2x-3\right)\)

\(\Rightarrow x^2-4x+4=0\)

\(\Rightarrow\left(-4\right)^2-4\left(1.4\right)=0\)(cái này là D )

\(\Rightarrow x_{1,2}=\frac{-b+-\sqrt{D}}{2a}=\frac{4+-\sqrt{0}}{2}\)

\(\Rightarrow2x-3=0\)

\(\Rightarrow2x=3\)

\(\Rightarrow x=\frac{3}{2}\)hoặc\(x=2\)

16 tháng 1 2016

bạn cứ nhân từ từ ra rùi rút gọn là đc thui mà