\(\frac{201-x}{99}+\frac{203-x}{97}=\frac{201-x}{95}+3=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2020
https://i.imgur.com/tueZiqZ.jpg
4 tháng 4 2016

Bất phương trình là sao hả bạn? Có dấu ''='' à?

4 tháng 4 2016

xin lỗi mình viết lộn

4 tháng 4 2016

2 -x/2002 + 1 -1 = 1-x/2003 + 1 - x/2004 + 1

=> 2004 - x/ 2002 = 2004 - x/ 2003 + 2004 -x/2004

=> (2004 -x) ( 1/2002-1/2003-1/2004)

ta thấy ( 1/2002-1/2003-1/2004) # 0

=> 2004 -x = 0 => x = 2004

27 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho!

17 tháng 4 2017

Đề bài tương đương:

\(\frac{201-x}{99}-1+\frac{203-x}{97}-1-\frac{205-x}{95}-1=0\)

\(\Leftrightarrow\frac{201-x}{99}-\frac{99}{99}+\frac{203-x}{97}-\frac{95}{97}-\frac{205-x}{95}-\frac{95}{95}=0\)

\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}-\frac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right).\left(\frac{1}{99}+\frac{1}{97}-\frac{1}{95}\right)=0\)

\(\Leftrightarrow300-x=0\left(\frac{1}{99}+\frac{1}{97}-\frac{1}{95}\ne0\right)\)

\(\Leftrightarrow x=300\)

4 tháng 2 2017

\(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3\)

\(\Leftrightarrow\frac{201-x}{99}+1+\frac{203-x}{97}+1-\frac{205-x}{95}-1=4\)

\(\Leftrightarrow\frac{200-x}{99}+\frac{200-x}{97}-\frac{200-x}{95}=4\)

\(\Leftrightarrow\left(200-x\right)\left(\frac{1}{99}+\frac{1}{97}-\frac{1}{95}\right)=4\)

Bạn tự làm tiếp.

4 tháng 2 2017

X = -104,695575 

   Đáp số ra lẻ quá bạn nhỉ 

17 tháng 2 2020

a)\(\frac{201-x}{99}+1+\frac{203-x}{97}+1+\frac{205-x}{95}+1=0\)

\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)

\(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\ne0\Rightarrow300-x=0\Rightarrow x=300\)

b)\(\frac{2-x}{2002}+1=\frac{1-x}{2003}+2-\frac{x}{2004}\)

\(\Leftrightarrow\frac{2004-x}{2002}=\frac{1-x}{2003}+1+1-\frac{x}{2004}\)

\(\Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}+\frac{2004-x}{2004}\)

\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)

\(\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\ne0\Rightarrow2004-x=0\Rightarrow x=2004\)

c)\(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1973}-2=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}-2\)

\(\Leftrightarrow\frac{x^2-10x-2000}{1971}+\frac{x^2-10x-2000}{1973}=\frac{x^2-10x-2000}{29}+\frac{x^2-10x-2000}{27}\)

\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\frac{1}{1971}+\frac{1}{1973}-\frac{1}{29}-\frac{1}{27}\right)=0\)

\(\frac{1}{1971}+\frac{1}{1973}-\frac{1}{29}-\frac{1}{27}\ne0\)

\(\Rightarrow x^2-10x-2000=0\Leftrightarrow\left(x+40\right)\left(x-50\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+40=0\\x-50=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-40\\x=50\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

a)

\(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)

\(\Leftrightarrow (x-23)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)

Dễ thấy: \(\frac{1}{24}>\frac{1}{26}; \frac{1}{25}>\frac{1}{27}\Rightarrow \frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}>0\)

$\Rightarrow \frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\neq 0$

Do đó $x-23=0\Rightarrow x=23$

b)

PT \(\Leftrightarrow \frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}\)

\(\Leftrightarrow (x+100)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)

Dễ thấy: $\frac{1}{98}< \frac{1}{96}; \frac{1}{97}< \frac{1}{95}$

$\Rightarrow \frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}< 0$ hay khác $0$

$\Rightarrow x+100=0\Rightarrow x=-100$

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

c)

PT \(\Leftrightarrow \frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)

\(\Leftrightarrow \frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

\(\Leftrightarrow (x+2005)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

Dễ thấy $\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}<0$ hay khác $0$

Do đó $x+2005=0\Rightarrow x=-2005$

d)

PT \(\Leftrightarrow \frac{201-x}{99}+1+\frac{203-x}{97}+1+\frac{205-x}{96}+1=0\)

\(\Leftrightarrow \frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{96}=0\)

\(\Leftrightarrow (300-x)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{96}\right)=0\)

Dễ thấy \(\frac{1}{99}+\frac{1}{97}+\frac{1}{96}>0\) hay khác $0$

Do đó $300-x=0\Rightarrow x=300$