K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2021

Vì \(\sqrt{x^2-2x+4} \)≥ 0 ( đúng với ∀ x )
→ \(2x - 2\) ≥ 0 
→x ≥ 1
Ta có : \(\sqrt{x^2-2x+4} \) = \(2x - 2\)
\(x^2-2x+4 \) = \((2x - 2)^2\)
⇔ \(x^2-2x+4 \) = \(4x^2 - 8x + 4 \)
⇔ \(0 = 3x^2 - 6x \)
⇔ 0 = \(3x(x-1)\)
\(\begin{cases} x=0\\ x-1=0 \end{cases} \)
Mà x ≥ 1
Vậy x ∈ { 1}

14 tháng 7 2021

Xin lỗi mình lm sai chút :)))
Vì \(\sqrt{x^2-2x+4} \)≥ 0 ( đúng với ∀ x )
→ 2x − 2 ≥ 0 
→x ≥ 1
Ta có : \(\sqrt{x^2-2x+4} \) = 2x−2
⇔ \(x^2 - 2x + 4\)\((2x-2)^2\)
⇔ 0=\(3x^2 - 6x \)
⇔ 0 = 3x(x−2)
\(\left[\begin{array}{} x=0\\ x=2 \end{array} \right.\)
Mà x ≥ 1
→ x ∈ {2}

21 tháng 9 2019

Điều kiện : \(x\ge0\)

Ta có : \(\sqrt{3x+1}-\sqrt{2x+2}=2\sqrt{x}-\sqrt{x+3}\)

            \(\Leftrightarrow3x+1+2x+2-2\sqrt{6x^2-8x+2}=4x+x+3-4\sqrt{x^2+3x}\)

            \(\Leftrightarrow\sqrt{6x^2+8x+2}=2\sqrt{x^2+3x}\)

              \(\Leftrightarrow6x^2+8x+2=4\left(x^2+3x\right)\)

             \(\Leftrightarrow2x^2-4x+2=0\Leftrightarrow x=1\)

Vậy nghiệm phương trình đã cho là : \(x=1\)

Chúc bạn học tốt !!!

a, \(\sqrt{x^2+2x-5}\)\(\sqrt{2x-1}\)( x \(\ge\frac{1}{2}\))

\(\Leftrightarrow x^2+2x-5=2x-1\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)

#mã mã#

b, \(\sqrt{x\left(x^3-3x+1\right)}\)\(=\sqrt{x\left(x^3-x\right)}\)\(\left(x\ge1\right)\)

\(\Leftrightarrow x\left(x^3-3x+1\right)\)\(x\left(x^3-1\right)\)

\(\Leftrightarrow\)x( x3 - 3x + 1 ) - x ( x3 - 1 ) = 0

\(\Leftrightarrow\)x ( x3 - 3x + 1 - x3 + 1 ) = 0

\(\Leftrightarrow\)x( 2-3x ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-3x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{2}{3}\left(ktm\right)\end{cases}}\)

vậy pt vô nghiệm

#mã mã#

30 tháng 7 2018

kuchiyose edo tensei

nhờ vào năng lực rinegan , ta có thể  đoán dc

  \(\left(\sqrt{1+x}+\sqrt{8-x}\right)^2=1+x+8-x-2\sqrt{\left(X+1\right)\left(8-x\right)}\)

vậy pt sẽ như sau

\(a,\left(\sqrt{1+x}+\sqrt{8-x}\right)^2-\sqrt{\left(1+x\right)\left(8-x\right)}=3\) " thêm bớt nếu m thông minh sẽ hiểu "

\(9+2\sqrt{\left(1+x\right)\left(8-x\right)}-\sqrt{\left(1+x\right)\left(8-x\right)}=3\)

\(\sqrt{\left(1+x\right)\left(8-x\right)}=-6\)

\(\left(1+x\right)\left(8-x\right)=36\)

đến đây m có thể tự làm

c)  \(\sqrt{x+5}=5-x^2\)

      \(x+5=\left(5-x\right)^2\)

     \(x+5=x^4-10x^2+25\)  " rồi xong pt bậc 4 :)

 \(x^4-10x^2-x+20=0\)

\(x^4=10x^2+x-20\)

\(x^4+2mx^2+m^2=10x^2+x-20+2mx^2+m^2\)

\(\left(x^2+m\right)^2=2x^2\left(5+m\right)+x+\left(m^2-20\right)\)

\(\Delta=1-8\left(5+m\right)\left(m^2-20\right)\)

\(\Delta=1-8\left(5m^2-100+m^3-20m\right)\)

\(\Delta=1-40m^2+800-8m^3+160m\)

\(\Delta=-\left(2m+9\right)\left(4m^2+2m-89\right)\)

lấy m= -9/2 , cho nhanh thay vào ta đươc

\(\left(x^2-\frac{9}{2}\right)^2=2x^2\left(5-\frac{9}{2}\right)+x+\left(\frac{9}{2}^2-20\right)\)

\(\left(x^2-\frac{9}{2}\right)^2=x^2+x+\frac{1}{4}\)

\(\left(x^2-\frac{9}{2}\right)^2=\left(x+\frac{1}{2}\right)^2\)

\(\hept{\begin{cases}x^2-\frac{9}{2}=x+\frac{1}{2}\\x^2-\frac{9}{2}=-x-\frac{1}{2}\end{cases}}\)

đến đây cậu có thể làm tiếp :)

câu B hơi gắt cần time suy nghĩ :)

6 tháng 10 2020

Xét: \(\sqrt{1+n^2+\frac{n^2}{\left(n+1\right)^2}}=\sqrt{\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}}\) (với \(n\inℕ\))

\(=\sqrt{\frac{n^2+2n+1+n^4+2n^3+n^2+n^2}{\left(n+1\right)^2}}\)

\(=\sqrt{\frac{n^4+n^2+1+2n^3+2n^2+2n}{\left(n+1\right)^2}}\)

\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{\left(n+1\right)^2}}=\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)

Áp dụng vào ta tính được: \(\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}=2015+\frac{1}{2016}+\frac{2015}{2016}\)

\(=2015+1=2016\)

Khi đó: \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2016\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2016\)

Đến đây xét tiếp các TH nhé, ez rồi:))

6 tháng 10 2020

chẳng biết đúng ko,mới lớp 5

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)

\(\sqrt{x^2}-\sqrt{2x}+\sqrt{1}+\sqrt{x^2}-\sqrt{4x}+\sqrt{4}=\sqrt{1}+\sqrt{2015^2}+\sqrt{\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)

\(\sqrt{x^2}-\sqrt{6x}+3=1+2015+\frac{2015}{2016}+\frac{2015}{2016}\)

\(x-\sqrt{6x}=1+\frac{2015}{1+2016+2016}-3\)

\(x-\sqrt{6x}=2-\frac{2015}{4033}\)

\(x-\sqrt{6x}=\frac{6051}{4033}\)