K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2015

Do tổng x4+y4 là một số lẻ nên x, y là 2 số khác tính chẵn - lẻ. Giả sử x là số chẵn, y là số lẻ. x = 2a và y = 2b+1.

\(x^4+y^4=\left(2a\right)^4+\left(2b+1\right)^4=16a^4+16b^4+32b^3+24b^2+8b+1\)

\(=8\left(2a^4+2b^4+4b^3+3b^3+b\right)+1\)

=> x4 + y4 chia 8 dư 1.

Mà 1995 chia 8 dư 3.

=> Không tồn tại các số nguyên a, b.

=> không tồn tại các số nguyên x, y.

4 tháng 12 2019

pt <=> \(4x^4+4x^2+4=4y^2\)

<=> \(4x^2+4x+1+3=4y^2\)

<=> \(\left(2y\right)^2-\left(2x+1\right)^2=3\)

<=> \(\left(2y+2x+1\right)\left(2y-2x-1\right)=3=3.1=-1.-3=1.3=-3.-1\)

Em tự làm tiếp nhé!

1 tháng 4 2022

a, bạn tự giải 

b, \(\left\{{}\begin{matrix}\left(m-1\right)y=m+1\\x=m-1+y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m+1}{m-1}\\x=\dfrac{m^2-2m+1+m+1}{m-1}=\dfrac{m^2-m+2}{m-1}\end{matrix}\right.\)

Thay vào ta được \(\left(\dfrac{m^2-m+2}{m-1}\right)^2+\dfrac{2014\left(m+1\right)}{m-1}=2015\)

bạn ktra lại đề nhé 

dễ thôi :)))

\(\Leftrightarrow x+y+2\sqrt{xy}=1980\)

vì x;y là các số nguyên dương nên x+y là số nguyên dương

\(\Rightarrow2\sqrt{xy}\in Z^+\Rightarrow\orbr{\begin{cases}x=0;y=1980\\x=1980;y=0\end{cases}}\)

21 tháng 9 2015

Giả sử rằng \(\left(x,y\right)\) là nghiệm nguyên của phương trình \(ax+by=c.\) Suy ra \(a\left(x+y\right)+y\left(b-a\right)=c.\) Vì \(b-a\vdots c\to a\left(x+y\right)\vdots c\). Mà \(a,c\) là hai số nguyên tố cùng nhau nên \(x+y\vdots c.\)