K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

Cái này em thử nhá :33

Giả sử \(x\ge y\ge z\left(x,y,z\inℤ\right)\)

+) Xét TH : \(x=y=z\) Khi đó pt có dạng : 

\(x^3+x^3+x^3=2021^{2002}\)

\(\Leftrightarrow3x^3=2021^{2002}\)

\(\Leftrightarrow x^3=\left(2021^{667}\right)^3\)

\(\Leftrightarrow x=2021^{667}\)

Do vậy : \(x=y=z=2021^{667}\)

+) Xét \(x>y>z\) ( Cái này chưa nghĩ :33 )

6 tháng 2 2020

Đạt ơi cô chưa hiểu chỗ:

\(x^3=\left(2021^{667}\right)^3\)

1 tháng 1 2022

x3 + y3 + 1 = 6xy

<=> (x + y)3 - 3xy(x + y) + 1 = 6xy

<=> (x + y)3 + 8 - 3xy(x + y + 2) = 7

<=> (x + y + 2)(x2 - xy + y2 + 2x + 2y + 4) = 7

Đến đây bạn tự giải tiếp

13 tháng 10

câu cuối là -2x-2y mà?

 

17 tháng 4 2022

x3 - 6xy + y3 = 8

<=> (x + y)3 - 3xy(x + y) - 6xy + 8 = 16

<=> (x + y + 2)(x2 + y2 - xy - 2x - 2y + 4) = 16

<=> \(\left(x+y+2\right)\left[\left(x-\dfrac{1}{2}y-1\right)^2+3\left(\dfrac{1}{2}y-1\right)^2\right]=16\)

Nhận thấy \(\left(x-\dfrac{1}{2}y-1\right)^2+3\left(\dfrac{1}{2}y-1\right)^2\ge0\)

=> x + y + 2 > 0

Khi đó 16 = 1.16 = 2.8 = 4.4

Lập bảng 

x + y + 2116428 
\(\left(x-\dfrac{1}{2}y-1\right)^2+3\left(\dfrac{1}{2}y-1\right)^2\)161482 
x      
y|     

 Đến đó bạn thế x qua y rồi làm tiếp nha

21 tháng 9 2021

Tham khảo: https://vi.wikipedia.org/wiki/%C4%90%E1%BB%8Bnh_l%C3%BD_l%E1%BB%9Bn_Fermat

28 tháng 4 2019

Đáp án C

16 tháng 10 2019

x 3 + 4 y = y 3 + 16 x 1 + y 2 = 5 ( 1 + x 2 ) ( 1 )

– Xét x = 0, hệ (I) trở thành  4 y = y 3 y 2 = 4 < = > y = ± 2

– Xét x ≠ 0, đặt  y x = t < = > y = x t . Hệ (I) trở thành

x 3 + 4 x t = x 3 t 3 + 16 x 1 + x 2 t 2 = 5 ( 1 + x 2 ) < = > x 3 ( t 3 − 1 ) = 4 x t − 16 x x 2 ( t 2 − 5 ) = 4 < = > x 3 ( t 3 − 1 ) = 4 x ( t − 4 ) ( 1 ) 4 = x 2 ( t 2 − 5 ) ( 2 )

 

Nhân từng vế của (1) và (2), ta được phương trình hệ quả

4 x 3 ( t 3 − 1 ) = 4 x 3 ( t − 4 ) ( t 2 − 5 ) < = > t 3 − 1 = t 3 − 4 t 2 − 5 t + 20     (Do x ≠ 0) <=>4t 2 + 5 t − 21 = 0 < = > t = − 3 t = 7 4

+ Với t = – 3, thay vào (2) được x2 = 1 x = ±1.

x = 1 thì y = –3, thử lại (1;–3) là một nghiệm của (I)

x = –1 thì y = 3, thử lại (–1;3) là một nghiệm của (I)

+ Với t = 7/4 , thay vào (2) được  x 2 = − 64 31 (loại)

 

Vậy hệ (I) có các nghiệm (0;2), (0;–2), (1;–3), (–1;3).

6 tháng 12 2019

Đáp án C

20 tháng 10 2017

Đáp án A

16 tháng 2 2017

Ta có:  x 3 + y 3 = ( x + y ) 2 < = > ( x + y ) ( x 2 − x y + y 2 − x − y ) = 0

Vì x, y nguyên dương nên x+y > 0, ta có:  x 2 − x y + y 2 − x − y = 0

⇔ 2 ( x 2 − x y + y 2 − x − y ) = 0 ⇔ x - y 2 + x - 1 2 + ( y - 1 ) 2 = 2

Vì x, y nguyên nên có 3 trường hợp:

+ Trường hợp 1:  x − y = 0 x - 1 2 = 1 ⇔ x = y = 2 , z = 4 y - 1 2 = 1

+ Trường hợp 2:  x − 1 = 0 x - y 2 = 1 ⇔ x = 1 , y = 2 , z = 3 y - 1 2 = 1

+ Trường hợp 3:  y − 1 = 0 x - y 2 = 1 x - 1 2 = 1 ⇔ x = 2 , y = 1 , z = 3

Vậy hệ có 3 nghiệm (1,2,3);(2,1,3);(2,2,4)

12 tháng 10 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Nếu x ≥ 0, y  ≥  0, z  ≥  0 thì:

x + y + z  ≥  0

x - y 2 + y - z 2 + z - x 2 ≥ 0

Suy ra:

x 3 + y 3 + z 3 - 3 x y z ≥ 0 ⇔ x 3 + y 3 + z 3 ≥ 3 x y z

Hay:  x 3 + y 3 + z 3 3 ≥ x y z