K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 1

\(\Leftrightarrow x^2+3xy+3y^2+xy-2x-6y=5\)

\(\Leftrightarrow x\left(x+3y\right)+y\left(x+3y\right)-2\left(x+3y\right)=5\)

\(\Leftrightarrow\left(x+y-2\right)\left(x+3y\right)=5\)

Bảng giá trị:

x+y-2-5-115
x+3y-1-551
x-44210
y1-31-3

Vậy \(\left(x;y\right)=\left(-4;1\right);\left(4;-3\right);\left(2;1\right);\left(10;-3\right)\)

4 tháng 4 2017

<=> 2x(4y+2)=2(9-3y)

=> 4x=\(-\frac{6y-18}{2y+1}=-\frac{6y+3-21}{2y+1}=-3+\frac{21}{2y+1}\)

Để x nguyên thì 4x nguyên, hay 21 phải chia hết cho 2y+1 => 2y+1={-21; -7; -3; -1; 1; 3; 7; 21}

Do x nguyên dương nên ta chỉ chọn được kết quả: 2y+1={3; 7} => y={1; 3}

+/ y=1=> x=1; y=3 => x=0

Các cặp x, y thỏa mãn là: {1; 1}; {0; 3}

15 tháng 12 2019

(x2-xy-6y2)+(2x-6y)-10 =0

[(x2-3xy)+(2xy-6y2)] + 2(x-3y) -10 = 0

(x-3y).(x+2y) + 2(x-3y) -10 = 0

(x-3y).(x+2y+2)=10

vì x,y nguyên x-3y và x+2y+2 phải nguyên

mà 10=1.10=(-1).(-10)=2.5=(-2).(-5)=10.1=(-10).(-1)=5.2=(-5).(-2)

31 tháng 3 2020

bang 0 chu bang may  ha chung may

 

1/2x^3y(2x^4y^3-4xy-6)

=1/2x^3y*2x^4y^3-1/2x^3y*4xy-1/2x^3y*6

=x^7y^4-2x^4y^2-3x^3y

1/2x^3y(2x^4y^3-4xy-6)

=1/2x^3y*2x^4y^3-1/2x^3y*4xy-1/2x^3y*6

=x^7y^4-2x^4y^2-3x^3y

1: \(=-3x^3-21x^2+x\)

2: \(=-15x^4y^7+10x^5y^6+5x^3y^5\)

3: \(=x^7y^4-2x^4y^2-3x^3y\)

5: \(=15x-6x^2\)

6: \(=4x^3-8x^2+10x\)

7: \(=-8x^5y^3+16x^7y^2-12x^3y^4\)

8: \(=x^7y^4-2x^4y^2-3x^3y\)

phương trình ban đầu (4x1)y=1826x⇔(4x−1)y=182−6x
Vì x nguyên nên x14y=1826x4x12y=36412x4x1=3+3614x1x≠14⇒y=182−6x4x−1⇒2y=364−12x4x−1=−3+3614x−1
y nhận giá trị nguyên => 2y cũng nhận giá trị nguyên => 2y nguyên <=> (4x-1) là các ước của 361
Lập bảng xét ước
Rồi thử lại
Done ^^

7 tháng 8 2023

\(x^2+3y^2+2xy-18\left(x+y\right)=73\)

\(\Leftrightarrow x^2+3y^2+2xy-18x-18y-73=0\)

\(\Leftrightarrow x^2-2\left(9-y\right)x+3y^2-18y-73=0\)

\(\Delta'=\left(9-y\right)^2-\left(3y^2-18y-73\right)\)

\(=81-18y+y^2-3y^2+18y+73\)

\(=-2y^2+154\)

\(=-2\left(y^2-77\right)\)

Phương trình có nghiệm khi \(\)

\(\Delta'\ge0\Leftrightarrow-2\left(y^2-77\right)\ge0\Leftrightarrow y^2-77\le0\)

\(\Leftrightarrow y^2\le77\Leftrightarrow-\sqrt[]{77}\le y\le\sqrt[]{77}\)

Phương trình có 2 nghiệm là 

\(\left[{}\begin{matrix}x_1=9-y+\sqrt[]{-2\left(y^2-77\right)}\\x_2=9-y-\sqrt[]{-2\left(y^2-77\right)}\end{matrix}\right.\) \(\left(-\sqrt[]{77}\le y\le\sqrt[]{77}\right)\)

7 tháng 8 2023

loading...

21 tháng 6 2016

P/s: Bn ấy k đc 5 k đó vì bn ấy có 5 nick