Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{y+x}{xy}=\frac{1}{2}\)
=>\(\frac{x+y}{xy}-\frac{1}{2}=0\)
\(\Rightarrow\frac{-\left(x-2\right)y-2x}{2xy}=0\)
=>(x-2)y-2x=0
=>x-2=0( vì x-2=0 thì nhân y-2x ms =0 )
=>x=2
=>y-2=0
=>y=2
vậy x=y=2
do x;y;z;t có vai trò như nhau ko mất tính tổng quát,ta giả sử:
\(x\le y\le z\le t\)
thay x;y;z;t bằng x,ta có:
\(xyzt=5.\left(x+y+z+t\right)+7\le20x+7\)
\(\Leftrightarrow t^3\le27\)
\(\Leftrightarrow t\le3\)
mk CHỈ NGHĨ ĐC ĐẾN ĐÂY THÔI xin lỗi nhé
Ta có: nhân hai vế vs 2:
2x2+2y2+2xy=4x+2y
=> (x2-4x+4)+(x2+2xy+y2)+(y2-2y+1)=5
=> (x-2)2+(x+y)2+(y-1)2=5=02+12+22
Thử các trường hợp rồi giải ra nhé! Chúc bạn học tốt!
1.
$3xy+x-y=1$
$\Rightarrow x(3y+1)-y=1$
$\Rightarrow 3x(3y+1)-3y=3$
$\Rightarrow 3x(3y+1)-(3y+1)=2$
$\Rightarrow (3y+1)(3x-1)=2$
Do $x,y$ là số nguyên nên $3x-1, 3y+1$ là số nguyên. Mà tích của chúng bằng 2 nên ta có các TH sau:
TH1: $3x-1=1, 3y+1=2\Rightarrow x=\frac{2}{3}$ (loại)
TH2: $3x-1=-1, 3y+1=-2\Rightarrow x=0; y=-1$
TH3: $3x-1=2, 3y+1=1\Rightarrow x=1; y=0$
TH4: $3x-1=-2, 3y+1=-1\Rightarrow x=\frac{-1}{3}$ (loại)
2.
$2x^2+3xy-2y^2=7$
$\Rightarrow (x+2y)(2x-y)=7$
Ta xét các TH sau:
TH1: $x+2y=1, 2x-y=7$
$\Rightarrow 2(x+2y)-(2x-y)=2-7=-5$
$\Leftrightarrow 5y=-5\Leftrightarrow y=-1$.
$x=1-2y=1-2(-1)=1+2=3$
TH2: $x+2y=-1, 2x-y=-7$
$\Rightarrow x=-3; y=1$
TH3: $x+2y=7, 2x-y=1$
$\Rightarrow x=\frac{9}{5}$ (loại)
TH4: $x+2y=-7, 2x-y=-1$
$\Rightarrow x=\frac{-9}{5}$ (loại)
Vậy.............
\(2xy-4x-y=1\Rightarrow2xy-4x-y+2=3\Rightarrow2x\left(y-2\right)-\left(y-2\right)=3\Rightarrow\left(2x-1\right)\left(y-2\right)=3\)
Vì x,y là nghiệm nguyên nên ta xét các trường hợp :
1. \(\hept{\begin{cases}2x-1=1\\y-2=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=5\end{cases}}}\)
2. \(\hept{\begin{cases}2x-1=3\\y-2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)
3. \(\hept{\begin{cases}2x-1=-1\\y-2=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)
4. \(\hept{\begin{cases}2x-1=-3\\y-2=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy nghiệm của phương trình là : \(\left(x;y\right)=\left(-1;1\right);\left(0;-1\right);\left(1;5\right);\left(2;3\right)\)
2xy-4x-y=1
x(2y-4)-y=1
2x(2y-4)-2y=2
2x(2y-4)-2y+4=6
2x(2y-4)-(2y-4)=6
(2y-4)(2x-1)=6
Đến đây, ta thấy 2x-1 là ước lẻ của 6 =>2x-1 E { 1;3 }
Với 2x-1=1 thì 2y-4=6 =>x=1, y=5
Với 2x-1=3 thì 2y-4=2 =>x=2, y=3
Em mới học lớp 6 nên chỉ làm theo cách lớp 6 thôi. Còn nghiệm nguyên thì em chưa học