Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy đc nghiệm (0;1;0) và (0;-1;0) rồi nhưng kb còn nghiệm khác hay k
Điều kiện xác định : \(\hept{\begin{cases}x\ge\frac{1}{2}\\y\ge1\\z\ge\frac{3}{4}\end{cases}}\)
Ta có : \(\sqrt{2x-1}+2\sqrt{2y-2}+3\sqrt{4z-3}=x+y+2z+4\)
\(\Leftrightarrow2\sqrt{2x-1}+4\sqrt{2y-2}+6\sqrt{4z-3}=2x+2y+4z+8\)
\(\Leftrightarrow\left(2x-1-2\sqrt{2x-1}+1\right)+\left(2y-2-4\sqrt{2y-2}+4\right)+\left(4z-3+6\sqrt{4z-3}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{2x-1}-1\right)^2+\left(\sqrt{2y-2}-2\right)^2+\left(\sqrt{4z-3}-3\right)^2=0\)
Mà ta luôn có \(\left(\sqrt{2x-1}-1\right)^2\ge0\), \(\left(\sqrt{2y-2}-2\right)^2\ge0\), \(\left(\sqrt{4z-3}-3\right)^2\ge0\)
\(\Rightarrow\left(\sqrt{2x-1}-1\right)^2+\left(\sqrt{2y-2}-2\right)^2+\left(\sqrt{4z-3}-3\right)^2\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{2x-1}-1=0\\\sqrt{2y-2}-2=0\\\sqrt{4z-3}-3=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=3\end{cases}}\) (TMDK)
Vậy (x;y;z) = (1;3;3)
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
\(y^2\left(y^2-1\right)+2y\left(y^2-1\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+2y\right)\left(y^2-1\right)-x^2-x=0\)
\(\Leftrightarrow y\left(y+1\right)\left(y-1\right)\left(y+2\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+y\right)\left(y^2+y-2\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+y\right)^2-2\left(y^2+y\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+y-1\right)^2-1-x^2-x=0\)
\(\Leftrightarrow\left(2y^2+2y-2\right)^2-\left(2x+1\right)^2-3=0\)
\(\Leftrightarrow\left(2y^2+2y-2x-3\right)\left(2y^2+2y+2x-1\right)=3\)
Pt ước số
a) Với m = -2
=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy S = {0; 2}
b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\)
=> x + mx = 2 + m
<=> x(m + 1) = 2 + m
Để hpt có nghiệm duy nhất <=> \(m\ne-1\)
<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)
=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)
Mà 3x - y = -10
=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)
<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)
<=> 6m = -8
<=> m = -4/3
c) Để hpt có nghiệm <=> m \(\ne\)-1
Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)
Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)
Để x nguyên <=> 1 \(⋮\)m + 1
<=> m +1 \(\in\)Ư(1) = {1; -1}
<=> m \(\in\) {0; -2}
Thay vào y :
với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)
m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)
Vậy ....
Câu trả lời hay nhất: Giai cau a)
x³ - y³ = xy + 8
<=> (x - y)³ + 3xy(x - y) - xy = 8
<=> (x - y)³ + xy(3x - 3y - 1) = 8
<=> (3x - 3y)³ + 27xy(3x - 3y - 1) = 216
<=> (3x - 3y)³ - 1 + 27xy(3x - 3y - 1) = 215
<=> (3x - 3y - 1)[(3x - 3y)² + (3x - 3y) + 1] + 27xy(3x - 3y - 1) = 215
<=> (3x - 3y - 1)[(3x - 3y)² + (3x - 3y) + 1 + 27xy] = 215
<=> (3x - 3y - 1)(9x² + 9y² - 9xy + 3x - 3y + 1) = 215 = 5.43 = 43.5 = (- 5)(- 43) = (- 43)(- 5)
{ 3x - 3y - 1 = 5 (1)
{ 9x² + 9y² - 9xy + 3x - 3y + 1 = 43 (2)
Tu (1) => y = x - 2 thay vao (2) khai trien rut gon co x(x - 2) = 0
=> x = 0; x = 2 => y = - 2; y = 0
Truong hop nay he co 2 nghiem nguyen (x;y) = (0; - 2) va (2; 0)
{ 3x - 3y - 1 = 43 (3)
{ 9x² + 9y² - 9xy + 3x - 3y + 1 = 5 (4)
{ 3x - 3y - 1 = - 5 (5)
{ 9x² + 9y² - 9xy + 3x - 3y + 1 = - 43 (6)
{ 3x - 3y - 1 = - 43 (7)
{ 9x² + 9y² - 9xy + 3x - 3y + 1 = - 5 (8)
Ban tu giai tiep 3 he sau ( chu y chon nghiem nguyen ) roi ket luan
-------------------------------------…
Ban xem vi du sau: Giai pt nghiem nguyen
2x² - 2x - 2y² = - 3
<=> 4x² - 4x - 4y² + 1 = - 5
<=> (2x + 2y - 1)(2x - 2y - 1) = - 5 = - 1.5 = 1.(- 5) = 5.( -1 ) = (- 5).1
{ 2x + 2y - 1 = - 1
{ 2x - 2y - 1 = 5
=> x = 3/2 ; y = - 3/2 ( loai )
{ 2x + 2y - 1 = 1
{ 2x - 2y - 1 = - 5
=> x = - 1/2 ; y = 3/2 ( loai )
{ 2x + 2y - 1 = 5
{ 2x - 2y - 1 = - 1
=> x = 3/2 ; y = 3/2 ( loai )
{ 2x + 2y - 1 = - 5
{ 2x - 2y - 1 = 1
=> x = - 1/2 ; y = - 3/2 ( loai)
KL : Pt khong co nghiem nguyen
---------------
Voi dang phuong trinh nghiem nguyen bac 2 nay minh bay ban mot thu thuat phan h thanh nhan tu de lam, bat ky bai nao cung giai quyet duoc
Vi du : Xet pt : 2x² - 2x + 3 = 2y²
Buoc 1 : Chuyen ta ca cac hang tu co chua an sang mot ve
2x² - 2x - 2y² = - 3
Them vao 2 ve mot so a nao do
2x² - 2x - 2y² + a = a - 3
Xem ve trai la pt bac 2 an so x; tham so y can phan h thanh nhan tu. Muon vay delta phai la so chinh phuong
= 1 - 2(- 2y² + a) = 4y² + 1 - 2a
De la so chinhs phuong chon a = 1/2 => = 4y²
Khi do tam thuc ve trai co 2 nghiem : x = (1 - 2y)/2; x = (1 + 2y)/2
=> x + y - 1/2 = 0 va x - y - 1/2 = 0
Vay tam thuc co the phan h thanh : (x + y - 1/2)(x - y - 1/2) = - 5/2
hay (2x + 2y - 1)(2x - 2y - 1) = - 5
có đúng ko bn
bn xem lại đi đề có vấn đề r kìa (ko có z)
x² + y² = 3 - xy
<=> (3/4)(4 - y²) = (x + y/2)² ≥ 0 => - 2 ≤ y ≤ 2 => y = 0; ± 1; ± 2;
=> y = 0 => x² = 3 không thoả
=> y = - 1 => x² + 1 = 3 + x => x² - x - 2 = 0 => x = - 1; x = 2
=> y = 1 => x² + 1 = 3 - x => x² + x - 2 = 0 => x = 1; x = - 2
=> y = - 2 => x² + 4 = 3 + 2x => (x - 1)² = 0 => x = 1
=> y = 2 => x² + 4 = 3 - 2x => (x + 1)² = 0 => x = - 1
KL : 6 nghiệm nguyên của pt là:
(x; y) = (- 1; - 1); (2; - 1); (1; 1); (- 2; 1); (1; - 2); (- 1; 2)