Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải
a) \(\sqrt{\left(x-4\right)^2\left(x+1\right)}>0\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x+1>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ne4\\x>-1\end{matrix}\right.\)
b) \(\sqrt{\left(x+2\right)^2\left(x-3\right)}>0\Rightarrow\left\{{}\begin{matrix}x\ne-2\\x-3>0\end{matrix}\right.\) \(\Rightarrow x>3\)
a, ĐK:\(x^2-4x+3\ge0\Rightarrow\left[{}\begin{matrix}x\le1\\3\le x\end{matrix}\right.\)
\(PT\Leftrightarrow x\sqrt{x^2-4x+3}=x\left(x+1\right)\)
Với x = 0 \(\Rightarrow pttm\)
Với \(x\ne0\) \(\Rightarrow\sqrt{x^2-4x+3}=x+1\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x+3=x^2+2x+1\end{matrix}\right.\)\(\Rightarrow x=\frac{1}{3}\left(tm\right)\)
b,ĐK: \(-\sqrt{10}\le x\le\sqrt{10}\)
\(PT\Leftrightarrow\left(x-3\right)\left(x+4\right)-\left(x-3\right)\sqrt{10-x^2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x+4-\sqrt{10-x^2}=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x+4=\sqrt{10-x^2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x^2+8x+16=10-x^2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2+4x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\end{matrix}\right.\)(tm)
8.
ĐKXĐ: \(x\ge\frac{2}{3}\)
\(\Leftrightarrow\frac{9\left(x+3\right)}{\sqrt{4x+1}+\sqrt{3x-2}}=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\\frac{9}{\sqrt{4x+1}+\sqrt{3x-2}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=9\)
\(\Leftrightarrow\sqrt{4x+1}-5+\sqrt{3x-2}-4=0\)
\(\Leftrightarrow\frac{4\left(x-6\right)}{\sqrt{4x+1}+5}+\frac{3\left(x-6\right)}{\sqrt{3x-2}+4}=0\)
\(\Leftrightarrow\left(x-6\right)\left(\frac{4}{\sqrt{4x+1}+5}+\frac{3}{\sqrt{3x-2}+4}\right)=0\)
\(\Leftrightarrow x=6\)
6.
ĐKXD: ...
\(\Leftrightarrow2\left(x^2-6x+9\right)+\left(x+5-4\sqrt{x+1}\right)=0\)
\(\Leftrightarrow2\left(x-3\right)^2+\frac{\left(x-3\right)^2}{x+5+4\sqrt{x+1}}=0\)
\(\Leftrightarrow\left(x-3\right)^2\left(2+\frac{1}{x+5+4\sqrt{x+1}}\right)=0\)
\(\Leftrightarrow x=3\)
7.
\(\sqrt{x-\frac{1}{x}}-\sqrt{2x-\frac{5}{x}}+\frac{4}{x}-x=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-\frac{1}{x}}=a\ge0\\\sqrt{2x-\frac{5}{x}}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=\frac{4}{x}-x\)
\(\Rightarrow a-b+a^2-b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)
\(\Leftrightarrow a=b\Leftrightarrow x-\frac{1}{x}=2x-\frac{5}{x}\)
\(\Leftrightarrow x=\frac{4}{x}\Rightarrow x=\pm2\)
Thế nghiệm lại pt ban đầu để thử (hoặc là bạn tìm ĐKXĐ từ đầu)
1: \(\Leftrightarrow\left(x+4\right)^2+\sqrt{x}-6x-14x=0\)
\(\Leftrightarrow\left(x+4\right)^2+\sqrt{x}-20x=0\)
\(\Leftrightarrow\left(x+4+5\sqrt{x}\right)\left(x+4-4\sqrt{x}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)
=>x=4
2: \(\Leftrightarrow\left(x+2\right)^2+6\sqrt{x}+8x-4\sqrt{x}-4=0\)
\(\Leftrightarrow\left(x+2\right)^2+2\sqrt{x}+8x-4=0\)
\(\Leftrightarrow x^2+4x+4+2\sqrt{x}+8x-4=0\)
\(\Leftrightarrow x^2+12x+2\sqrt{x}=0\)
=>x=0
\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)
\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)
Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)
Phương trình trở thành :
\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)
a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)
Vậy phương trình có nghiệm là \(x=0\)
b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)
Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]
Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)
t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2
Suy ra phương trình đã cho có nghiệm đúng
\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)
Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm
Đề là \(...-x^3-x-12\) thì pt này không giải được
Phải là \(x^2\)